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Black-Box Optimization

For a given budget:

Optimize the threshold and 

weights for the combined 

sum of the uncertainties 

over multiple IoU Thresholds

III. Optimal Uncertainty Combination
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KITTI

BDD

CODA

EfficientDet-D0 pre-trained on COCO

Input resolution: 1024x512

Batch size: 8

AP: Average precision

Acc: Classification accuracy

mIoU: Average intersection over union

Inference time: 

Baseline: ~35ms 

LA: ~30ms

MC: ~185ms

• Correlation between estimation method 

and dataset characteristics

• Better performance than baseline
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• Positive impact of calibration and normalization
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Using only entropy and aleatoric uncertainty:

• +2–11% via optimized combination

• +36–60% over conventional methods
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Standard Sum
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Controllable thresholding performance
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Paper #176

In this work, we:
› Define cost-sensitivity for object detection
› Automate the thresholding process
› Investigate and Optimize the combination 

of different uncertainties
› Introduce metrics and requirements 

Key advantages:
› Model-Agnostic Failure Recognition
› Application-Agnostic Budget-Based Thresholding
› Efficient Uncertainty Estimation via Loss Attenuation
› Minimal Model Expansion with 0.07% Increase in Parameters
› Considerable Decrease in False Detections Enhancing Overall Performance
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during Training
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during Inference

Sample during 
Inference

Low Medium High

Entropy represents the 

separation capabilities of the 

model between the classes

Cat 0.8 0.2 0.3

Dog 0.1 0.5 0.4

Goat 0.1 0.3 0.3

Monte Carlo Dropout
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2Negative log-likelihood
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Extend output to 8 

values per anchor

Negative log-likelihood

The uncertainty is learned as a function of the data

Uncertainty Estimation
Regression – Aleatoric
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