

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Nadja Klein, and Sahin Albayrak

Over/underconfidence

Over/underconfidence

Noisy objects

Over/underconfidence

Noisy objects

Unknown objects

@ntinental **☆**

7/4/2024

Over/underconfidence

Noisy objects

Unknown objects

Reject option based on different uncertainties is required

@ntinental **☆**

Cost-Sensitive Approach

	CD	FD
$\begin{array}{c} \mathrm{CD_{T}} \\ \mathrm{FD_{T}} \end{array}$	$C_{ ext{CD}} \cdot ext{CD} \ C_{ ext{MD}} \cdot ext{MD} $	$C_{ m FD} \cdot { m FD} \ C_{ m BG} \cdot { m BG} $

Cost-Sensitive Approach

	CD	FD
CD_{T} FD _T	0	$C_{\mathrm{FD}} \cdot \mathrm{FD} $

$$C_{\text{total}} = C_{\text{MD}} \cdot |\text{MD}| + C_{\text{FD}} \cdot |\text{FD}|$$

Ontinental

Ontinental

Classification Uncertainty [%] Normalized Localization Uncertainty

Challenge II: Selecting a threshold on

uncertainty $\in [0, \infty)$

@ntinental **☆**

Thresholding Performance

$$\begin{split} \mathbf{CD}@\mathbf{FD}(b) &= \sum_{\tau=0.5}^{0.75} \mathrm{TNR}(\mathrm{TPR}(\delta(b,\tau))) \\ \mathbf{FD}@\mathbf{CD}(b) &= \sum_{\tau=0.5}^{0.75} \mathrm{TPR}(\mathrm{FPR}(\delta(b,\tau))) \end{split}$$

[2]

Thresholding Performance

$$\begin{split} \mathbf{CD} & \mathbf{CD} & \mathbf{FD}(b) = \sum_{\tau=0.5}^{0.75} \mathbf{TNR}(\mathbf{TPR}(\delta(b,\tau))) \\ & \mathbf{FD} & \mathbf{CD}(b) = \sum_{\tau=0.5}^{0.75} \mathbf{TPR}(\mathbf{FPR}(\delta(b,\tau))) \end{split}$$

Detector Performance

$$\frac{|\mathrm{CD}|}{|\mathrm{CD}| + |\mathrm{FD}|} \leq \frac{i|\mathrm{CD}|}{i|\mathrm{CD}| + (1-m)|\mathrm{FD}|}$$

Recall, Precision, Accuracy, F1-Score

Automate thresholding and its evaluation

Thresholding Performance

$$\begin{split} \mathbf{CD}@\mathbf{FD}(b) &= \sum_{\tau=0.5}^{0.75} \mathrm{TNR}(\mathrm{TPR}(\delta(b,\tau))) \\ \mathbf{FD}@\mathbf{CD}(b) &= \sum_{\tau=0.5}^{0.75} \mathrm{TPR}(\mathrm{FPR}(\delta(b,\tau))) \end{split}$$

Detector Performance

$$\frac{|\mathrm{CD}|}{|\mathrm{CD}| + |\mathrm{FD}|} \leq \frac{i|\mathrm{CD}|}{i|\mathrm{CD}| + (1-m)|\mathrm{FD}|}$$

Recall, Precision, Accuracy, F1-Score

Requirements

minimize
$$\{(1 - i), 0\}$$

 $1 - i \le m$
 $(1 - i)(|FD| + |CD| + |MD|) \le m|FD|$

[2]

Weights

$$\mathbf{w}^{\top} \times (\sigma_{\text{cls}}, \sigma_{\text{loc}})^{\top}, \mathbf{w} = (w_1, w_2)^{\top} \in [0, 1]^2$$

Challenge III: Optimal Combination

Challenge III: Optimal Combination

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Classification and Regression – Epistemic and Aleatoric

[3]

Classification and Regression – Epistemic and Aleatoric

[3,4]

Classification and Regression – Epistemic and Aleatoric

[3,4]

Ontinental

Datasets BDD100K, KITTI and CODA

BDD100K:

- Relatively large
- Many difficult scenarios:
 - Night/crowded images
 - Tiny objects

Ontinental

UAI2024

Datasets BDD100K, KITTI and CODA

BDD100K:

- Relatively large
- Many difficult scenarios:
 - Night/crowded images
 - Tiny objects

KITTI:

- Relatively small
- High fidelity dataset
 with daylight only

Datasets BDD100K, KITTI and CODA

BDD100K:

- Relatively large
- Many difficult scenarios:
 - Night/crowded images
 - Tiny objects

KITTI:

- Relatively small
- High fidelity dataset
 with daylight only

CODA: Real-World Road Corner Case Dataset for Object Detection in Autonomous Driving

Evaluation Set Model pre-trained on BDD100K

Results Uncertainty Estimation Methods

EfficientDet-D0 pre-trained on COCO Input resolution: 1024x512 Batch size: 8

Inference time: Baseline: ~35ms LA: ~30ms MC: ~185ms

Results Uncertainty Estimation Methods

EfficientDet-D0 pre-trained on COCO Input resolution: 1024x512 Batch size: 8

Inference time:

Baseline: ~35ms LA: ~30ms MC: ~185ms

AP: Average precisionAcc: Classification accuracymIoU: Average intersection over union

	Method	AP↑	Acc↑	mIoU↑
	Baseline	$72.83 {\pm} 0.12$	0.99±0.00	$90.06 {\pm} 0.05$
	LA	73.26±0.50	$0.99 {\pm} 0.00$	90.34±0.03
KITTI	MC	$70.88 {\pm} 0.17$	$0.99 {\pm} 0.00$	$89.10 {\pm} 0.02$
	MC+LA	$70.15 {\pm} 0.09$	0.99±0.00	89.03±0.05
	Baseline	$24.69{\pm}0.09$	0.94±0.00	67.74±0.07
חחפ	LA	$24.38 {\pm} 0.12$	$0.94{\pm}0.00$	$67.69 {\pm} 0.05$
ססס	MC	$25.55{\pm}0.02$	$0.94{\pm}0.00$	$67.30 {\pm} 0.02$
	MC+LA	$24.78 {\pm} 0.01$	$0.93 {\pm} 0.00$	66.60 ± 0.02
CODA	Baseline	$16.09 {\pm} 0.07$	0.89±0.00	72.23 ± 0.03
	LA	$15.53 {\pm} 0.25$	$0.89{\pm}0.00$	$72.06 {\pm} 0.14$
	MC	$16.97{\pm}0.04$	$0.89{\pm}0.00$	$\textbf{73.30}{\pm 0.08}$
	MC+LA	$16.05 {\pm} 0.25$	$0.89{\pm}0.00$	$72.19 {\pm} 0.03$

- Correlation between estimation method and dataset characteristics
- Better performance than baseline

Results

Comparison Uncertainty Types

Results

Comparison Uncertainty Types

Results Budget and Optimization

Controllable thresholding performance

Results Budget and Optimization

		Weights			BAcch	
		$\sigma_{ m ent}$	$\sigma_{\rm ep,loc}$	$\sigma_{ m al}$	TD@CD95	DACC
Standard Sum	$\sum \sigma_{ m mc+la}$	$1.00{\pm}0.00$	$1.00 {\pm} 0.00$	$1.00{\pm}0.00$	$68.02{\pm}1.97$	$0.81{\pm}0.01$
Optimized Sum	$\sum * \sigma_{mc+la}$	$0.16{\pm}0.03$	$0.03 {\pm} 0.04$	$1.0{\pm}0.00$	$\textbf{72.36}{\pm}\textbf{2.72}$	$0.83{\pm}0.01$
KITTI	$\sum \sigma_{ m la}$	$1.00{\pm}0.00$	-	$1.00{\pm}0.00$	65.86±3.43	$0.80{\pm}0.02$
	$\overline{\sum} * \sigma_{\text{la}}$	$0.14{\pm}0.06$	-	$0.72{\pm}0.21$	70.93±1.47	$0.83{\pm}0.01$
-	$\sum \sigma_{\rm mc+la}$	$1.00{\pm}0.00$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	32.03±0.24	$0.63 {\pm} 0.00$
	$\overline{\sum} * \sigma_{mc+la}$	$0.06{\pm}0.03$	$0.00{\pm}0.00$	$0.72{\pm}0.32$	37.98±0.90	$0.67{\pm}0.00$
י עעם	$\sum \sigma_{ m la}$	$1.00{\pm}0.00$	-	$1.00{\pm}0.00$	30.65±0.23	$0.63 {\pm} 0.00$
	$\overline{\sum} * \sigma_{la}$	$0.05{\pm}0.02$	-	$0.72{\pm}0.36$	38.11±0.21	0.67±0.00
CODA -	$\sum \sigma_{\rm mc+la}$	$1.00{\pm}0.00$	$1.00 {\pm} 0.00$	$1.00 {\pm} 0.00$	$40.60 {\pm} 0.21$	$0.68{\pm}0.00$
	$\sum * \sigma_{mc+la}$	$0.07{\pm}0.02$	$0.00{\pm}0.00$	$0.82{\pm}0.25$	$45.68{\pm}0.53$	$\textbf{0.70}{\pm}\textbf{0.00}$
	$\sum \sigma_{ m la}$	$1.00{\pm}0.00$	-	$1.00{\pm}0.00$	$38.49 {\pm} 0.96$	$0.67 {\pm} 0.00$
	$\sum * \sigma_{la}$	$0.10{\pm}0.01$	-	$0.99{\pm}0.00$	$43.95{\pm}0.43$	$0.69{\pm}0.00$

Using only entropy and aleatoric uncertainty:

Controllable thresholding performance

Results Budget and Optimization

Controllable thresholding performance

_						
		Weights			BAcct	
		$\sigma_{ m ent}$	$\sigma_{ m ep,loc}$	$\sigma_{ m al}$	TD@CD951	DAtt
Standard Sum	$\sum \sigma_{ m mc+la}$	$1.00{\pm}0.00$	$1.00{\pm}0.00$	1.00±0.00	68.02±1.97	0.81±0.01
Optimized Sum	$\sum * \sigma_{mc+la}$	$0.16{\pm}0.03$	$0.03{\pm}0.04$	$1.0{\pm}0.00$	72.36±2.72	0.83±0.01
KITTI	$\sum \sigma_{ m la}$	$1.00{\pm}0.00$	-	1.00±0.00	65.86±3.43	0.80±0.02
	$\overline{\sum} * \sigma_{la}$	$0.14{\pm}0.06$	-	0.72±0.21	70.93±1.47	0.83±0.01
=	$\sum \sigma_{\rm mc+la}$	$1.00{\pm}0.00$	1.00 ± 0.00	1.00±0.00	32.03±0.24	0.63±0.00
חחם	$\overline{\sum} * \sigma_{mc+la}$	$0.06{\pm}0.03$	$0.00{\pm}0.00$	0.72±0.32	37.98±0.90	0.67±0.00
RDD -	$\sum \sigma_{la}$	$1.00{\pm}0.00$	-	1.00±0.00	30.65±0.23	0.63±0.00
	$\overline{\sum} * \sigma_{la}$	$0.05{\pm}0.02$	-	0.72±0.36	38.11±0.21	0.67±0.00
= CODA -	$\sum \sigma_{\rm mc+la}$	$1.00{\pm}0.00$	$1.00{\pm}0.00$	1.00±0.00	40.60±0.21	0.68±0.00
	$\overline{\sum} * \sigma_{mc+la}$	$0.07{\pm}0.02$	$0.00{\pm}0.00$	0.82±0.25	45.68±0.53	0.70±0.00
	$\sum \sigma_{ m la}$	$1.00{\pm}0.00$	-	1.00±0.00	38.49±0.96	0.67±0.00
	$\sum * \sigma_{la}$	$0.10{\pm}0.01$	-	0.99 ± 0.00	43.95±0.43	0.69±0.00

Using only entropy and aleatoric uncertainty:

- +2–11% via optimized combination
- +36–60% over conventional methods

Results

Qualitative – Failure Recognition and Auto-Labeling

Ground Truth

Ground Truth

Failure Recognition

Post-Thresholding

Eval on IoU 0.75

Results

Qualitative – Failure Recognition and Auto-Labeling

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Failure Recognition

Ground Truth

Auto-Labeling

Post-Thresholding

Ground Truth

Failure Recognition

Post-Thresholding

Eval on IoU 0.50

Correctly removed Falsely removed Ground Truth

Auto-Labeling

Post-Thresholding

@ntinental ⁵

Summary

In this work, we:

- > Define cost-sensitivity for object detection
- > Automate the thresholding process
- Investigate and Optimize the combination of different uncertainties
- > Introduce metrics and requirements

Summary

In this work, we:

- > **Define cost-sensitivity** for object detection
- > Automate the thresholding process
- Investigate and Optimize the combination of different uncertainties
- > Introduce metrics and requirements

Key advantages:

- > Model-Agnostic Failure Recognition
- > Application-Agnostic Budget-Based Thresholding
- > Efficient Uncertainty Estimation via Loss Attenuation
- > Minimal Model Expansion with 0.07% Increase in Parameters
- > Considerable Decrease in False Detections Enhancing Overall Performance

Appendix

References

- Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Azarm Nowzad, and Sahin Albayrak. Overcoming the limitations of localization uncertainty: Efficient and exact non-linear post-processing and calibration. In Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023., pages 52–68. Springer Nature Switzerland, 2023.
- 2. Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.
- 3. Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? Advances in Neural Information Processing Systems, 30, 2017.
- 4. Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In 33rd International Conference on Machine Learning, pages 1050–1059, 2016.
- 5. Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? The kitti vision benchmark suite. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3354–3361, 2012.
- Kaican Li, Kai Chen, Haoyu Wang, Lanqing Hong, Chaoqiang Ye, Jianhua Han, Yukuai Chen, Wei Zhang, Chunjing Xu, Dit-Yan Yeung, Xiaodan Liang, Zhenguo Li, and Hang Xu. Coda: A real-world road corner case dataset for object detection in autonomous driving, 2022.
- Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2633–2642, 2020.

Classification and Regression – Epistemic

Classification and Regression – Epistemic

Uncertainty Estimation Classification and Regression – Epistemic

Entropy represents the separation capabilities of the model between the classes

$$H(X) = -\sum_{x_i \in X} P(x_i) * Log_2(P(x_i))$$

Cat	0.8	0.2	0.3
Dog	0.1	0.5	0.4
Goat	0.1	0.3	0.3
	Low	Medium	High

Regression – Aleatoric

Observation noise, weather conditions, misleading situations

Input

Regression – Aleatoric

Observation noise, weather conditions, misleading situations

Input → Network

Rewrite box loss with loss attenuation

Negative log-likelihood
$$\mathcal{L}_{NN} = \frac{1}{2N} \sum_{i=1}^{N} \frac{\|\mathbf{y}_i^* - \mathbf{f}(\mathbf{x}_i)\|^2}{\sigma(\mathbf{x}_i)^2} + \log \sigma(\mathbf{x}_i)^2$$

Regression – Aleatoric

The uncertainty is learned as a function of the data

[1,3]

Optimal Threshold = 0.028

Optimization for a budget of 95% CDs over the IoU thresholds 0.5-0.75

Optimal Threshold = 0.028

Optimization for a budget of 95% CDs over the IoU thresholds 0.5-0.75

All classes correct

#	loU
1	0.66
2	0.70
3	0.77
4	0.66
5	0.59
6	0.73
7	0.63
8	0.77
9	0.69
10	0.93
11	0.88
12	0.78
13	0.54
14	0.83
15	0.36
16	0.99

Optimal Threshold = 0.028

Optimization for a budget of 95% CDs over the IoU thresholds 0.5-0.75

All classes correct

#	IoU	
1	0.66	
2	0.70	
3	0.77	
4	0.66	
5	0.59	
6	0.73	
7	0.63	
8	0.77	R
9	0.69	
10	0.93	
11	0.88	
12	0.78	
13	0.54	
14	0.83	
15	0.36	
16	0.99	

Ontinental