

DAI-Labor

Distributed Artificial Intelligence Laboratory

TECHNISCHE

Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection

Moussa Kassem Sbeyti^{1,2}, Michelle Karg¹, Christian Wirth¹, Nadja Klein³, and Sahin Albayrak²

¹Continental AG, Germany

²DAI-Labor, Technische Universität Berlin, Germany ³Technische Universität Dortmund, Germany

Background and Motivation

Challenges and objectives for utilizing uncertainty in failure recognition:

technische universität

K)ein ab

<u>Uncertainty Overlap</u>: Overlapping uncertainty of correct detections (CDs) and false detections (FDs).

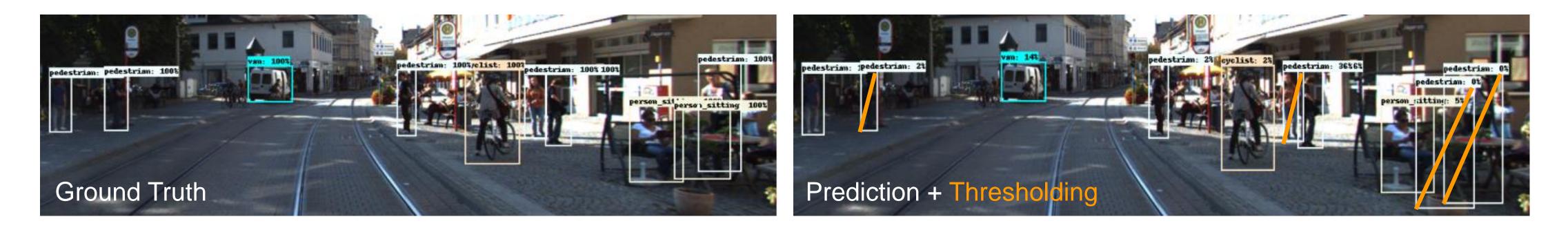
 \Rightarrow Address the cost implications of the overlap when thresholding.

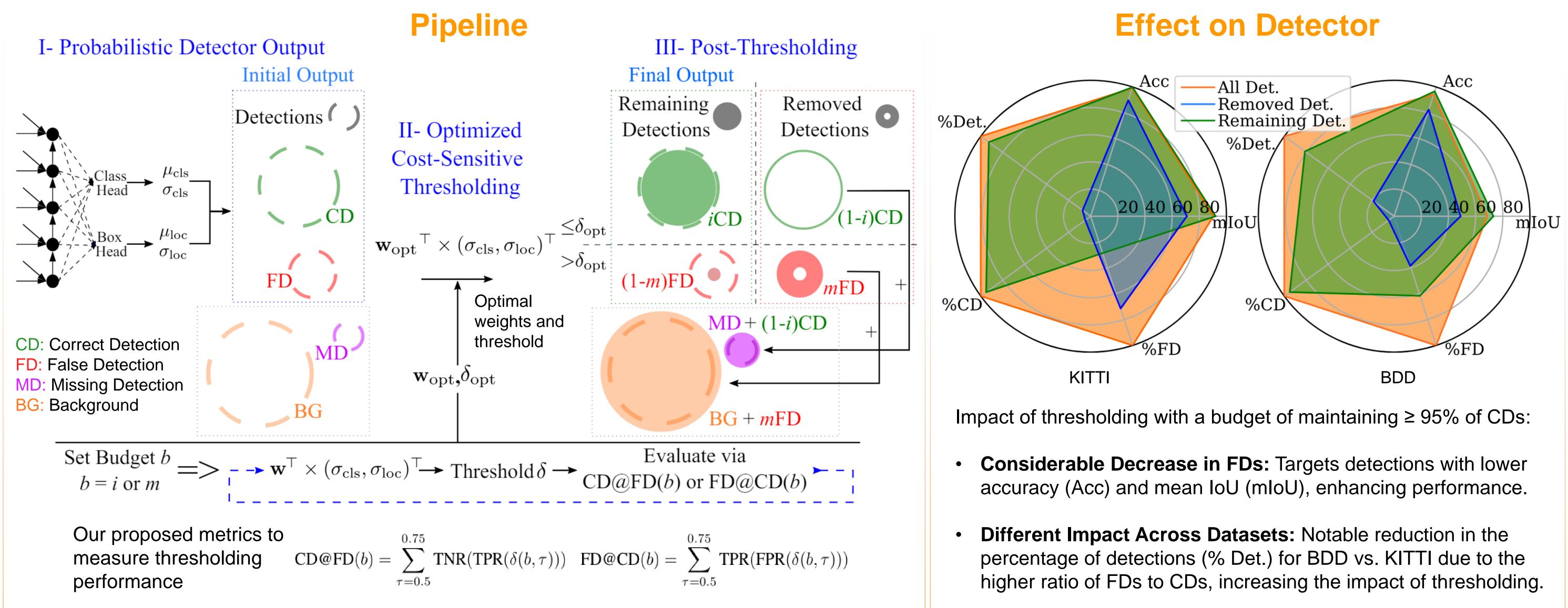
Manual Thresholding: Subjectivity and lack of generalizability of manual Π.

- ✓ Model-Agnostic Failure Recognition: Addresses the trade-off safety vs. performance in object detection via a post-processing pipeline.
- ✓ Application-Agnostic Budget-Based Thresholding: Budget on removed FDs or maintained CDs.
- ✓ Performance Enhancement Post-Thresholding.

thresholds, especially when simultaneously considering multiple uncertainties. \Rightarrow Develop a cost-sensitive, automated, adaptive thresholding method.

- **<u>Uncertainty Combination</u>**: Difficulty in effectively combining multiple III. uncertainties with different ranges and contribution to failure recognition. \Rightarrow Define an optimal combination strategy for uncertainties with a range $\in [0, \infty)$.
- Efficient Uncertainty Estimation: No added inference time; uses only loss attenuation.
- **Minimal Model Expansion:** Only 0.07% increase in parameters due to extending the localization head.
- Transparent Evaluation: Utilizes specifically defined requirements and metrics.





Method and Application Insights

Uncertainty Overlap Cost-Sensitive Approach

Defines cost-sensitivity for object detectors and reduces total cost indirectly via a budget on MDs or FDs.

Detector Cost Matrix

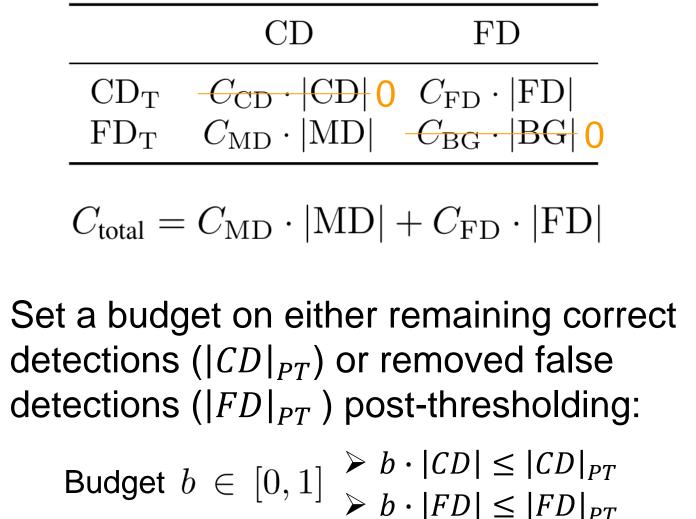
Manual Thresholding Automation via ROC Curve

Automatically iterates through IoU thresholds from 0.5 to 0.75 in 0.05 increments to find the optimal threshold for a given budget.

III. Uncertainty Combination Black-Box Optimization

With entropy and aleatoric uncertainty only:

- +2–11% via optimized sum.
- +36–60% over conventional methods.



Our baseline is EfficientDet-D0:

- Pre-trained on COCO.
- Fine-tuned on two autonomous driving datasets separately: KITTI and BDD100K.
- Evaluated on an additional corner cases dataset CODA.

We investigate the classification, localization, epistemic and aleatoric uncertainties, entropy, their calibrated and normalized versions.

Rate - 8.0	$\leftarrow \operatorname{FPR}(\delta(b,\tau)), \operatorname{TPR}(\delta(b,\tau))$	on FD
- 9.0 tive		_ IoU
True Positive Rate - 8.0 - 8.0 - 8.0	$\stackrel{i}{=}$ Budget b	Threshold
-	Error Rate Random	
0.0 - Budget or	0.5 1.	.0
CD/MD	False Positive Rate	_

_				_
KITTI -	$\frac{\sum \sigma_{\rm mc+la}}{\sum * \sigma_{\rm mc+la}}$	68.02±1.97 72.36 ± 2.72	0.81±0.01 0.83±0.01	Standard Optimized
	$\sum_{i=1}^{N} \sigma_{\mathrm{la}}$	65.86±3.43 70.93 ± 1.47	0.80±0.02 0.83±0.01	_
BDD -	$\sum_{i=1}^{n} \sigma_{\rm mc+la}$	32.03±0.24 37.98±0.90	0.63±0.00 0.67±0.00	_
	$\sum_{i=1}^{N} \sigma_{\mathrm{la}}$	30.65±0.23 38.11±0.21	0.63±0.00 0.67±0.00	_
CODA -	$\sum_{i=1}^{n} \sigma_{\rm mc+la}$	40.60±0.21 45.68±0.53	0.68±0.00 0.70±0.00	_
	$\sum_{i=1}^{N} \sigma_{\mathrm{la}}$	38.49±0.96 43.95±0.43	0.67±0.00 0.69±0.00	_

Inference time with and without uncertainty estimation:

Baseline: ~35ms

Loss Attenuation (la): ~30ms

Monte Carlo Dropout (mc): ~185ms