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Challenges and objectives for utilizing uncertainty in failure recognition: v Model-Agnostic Failure Recognition: Addresses the trade-off safety vs.

_ _ _ _ performance in object detection via a post-processing pipeline.
|.  Uncertainty Overlap: Overlapping uncertainty of correct detections (CDs) and

false detections (FDs). v Application-Agnostic Budget-Based Thresholding: Budget on removed FDs
= Address the cost implications of the overlap when thresholding. or maintained CDs.

_ L o v' Performance Enhancement Post-Thresholding.
. Manual Thresholding: Subjectivity and lack of generalizability of manual

thresholds, especially when simultaneously considering multiple uncertainties. Efficient Uncertainty Estimation: No added interence time; uses only loss
= Develop a cost-sensitive, automated, adaptive thresholding method. attenuation.

AN

v Minimal Model Expansion: Only 0.07% increase in parameters due to

I1l.  Uncertainty Combination: Difficulty in effectively combining multiple extending the localization head.

uncertainties with different ranges and contribution to failure recognition. | N N _ _ _
= Define an optimal combination strategy for uncertainties with a range € [0, o). v Transparent Evaluation: Utilizes specifically defined requirements and metrics.
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+ mFD Impact of thresholding with a budget of maintaining = 95% of CDs:
Set Bl}dget b —> — > W' X (0us, Tloc) — Threshold§ — | Evaluate via — + Considerable Decrease in FDs: Targets detections with lower
b=iorm | CD@FD(b) or FD@CD() | accuracy (Acc) and mean loU (mloU), enhancing performance.
Our proposed metrics to 0.75 0.75 « Different Impact Across Datasets: Notable reduction in the
measure thresholding  CD@FD(b) = Z TNR(TPR(4(b,7))) FD@CD(b) = Z TPR(FPR(4(b,7))) percentage of detections (% Det.) for BDD vs. KITTI due to the
performance 7=0.5 r=0.5 nigher ratio of FDs to CDs, increasing the impact of thresholding.
l.  Uncertainty Overlap II. Manual Thresholding lll. Uncertainty Combination
Cost-Sensitive Approach Automation via ROC Curve Black-Box Optimization
Defines cost-sensitivity for object Automatically iterates through loU thresholds With entropy and aleatoric uncertainty only:
detectors and reduces total cost from 0.5 to 0.75 in 0.05 increments to find « +2-11% via optimized sum.
iIndirectly via a budget on MDs or FDs. the optimal threshold for a given budget. « +36-60% over conventional methods.
Detector Cost Matrix 10 FD@CD95t _bBinary
' Accuracy
CD FD 9
i 42 68.02£1.97 | 0.81+0.01 Standard
CDr Cop-|C€PI0 Cgp - |FD] g 0.8 2 Tmesa - oK
FDr  Cup - IMD| Cie - [BG . FPR(0(b, 7)), TPR(6(b, 7)) T > % Omerta 72.361+2.72 | 0.83+0.01 Optimized
2 0.6- - loU S Ol 65.86+3.43 | 0.80+0.02
Crotal = Cup - [MD| + Cgp - [FD| 'g 0.4 Threshold Yoxo,  70.93+1.47 | 0.83+0.01
. - Qq} —— Budget b 3 Omesla 32.03+0.24 | 0.6340.00
Set a l_audget on either remaining correct 5 0.2 —— Brror Rate S % Tesa 37.9840.90 | 0.6740.00
detections (|CD|p7) or removed false — Rand BDD
detections (|FD|py ) post-thresholding: 0.0 - | aneor 2. O 30.65+0.23 | 0.63+0.00
0.5 1.0 >k oy, 38.11+0.21 | 0.67+0.00
Budget b € [0, 1] » b-|CD| < |CD|pr Budget on : :
"2 > b-|FD| < |FD|pr CD/MD False Positive Rate > Omerta 40.60+0.21 | 0.68+0.00
> % Omesla 45.68+0.53 | 0.70+£0.00
CODA
Our baseline is EfficientDet-DO: 2. Ola 38.491+0.96 | 0.6710.00
e Pre-trained on COCO. Z * Ola 43.95+0.43 0.69+0.00
* Fine-tuned on two autonomous driving datasets separately: KITTI and BDD100K.
* Evaluated on an additional corner cases dataset CODA. Inference time with and without uncertainty estimation:
We Iinvestigate the classification, localization, epistemic and aleatoric uncertainties, entropy, their Baseline: ~35ms

calibrated and normalized versions. Loss Attenuation (la): ~30ms Monte Carlo Dropout (mc): ~185ms
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