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› EfficientDet-D0 pre-trained on COCO

› Input resolution: 1024x512

› Soft-NMS output is reordered based 

on lowest MSE
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› KITTI: 7 classes

Increases localization performance
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Recalibrate

Overestimated 

uncertainty

Ground Truth

Calculate MSE
Prediction allocation via nearest-

neighbor rather than thresholding:

0

› For every label, a corresponding box 

is present.

› Usually the one with the highest 

classification score is designated. 

› Does not necessarily correspond to the 

ground truth based on localization.
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Isotonic Regression Factor Scaling
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Uncertainty is mis-calibrated

Our FS losses outperform SOTA

Per-coordinate and per-class calibration IR 

outperforms other methods 

Relative calibration affects small objects

Distribution of the localization error; expected is a Gaussian

KITTI BDD

Uncalibrated Absolute Calib. Relative Calib.

ECE NLL ECE NLL ECE NLL

ALL 0.384 ± 0.000 3.22 ± 0.01 0.033 ± 0.000 3.15 ± 0.42 0.031 ± 0.000 2.93 ± 0.18

Small 0.383 ± 0.000 2.95 ± 0.06 0.049 ± 0.005 4.54 ± 2.59 0.029 ± 0.002 3.16 ± 1.36

Medium 0.382 ± 0.000 3.00 ± 0.00 0.039 ± 0.001 2.55 ± 0.12 0.033 ± 0.001 2.42 ± 0.09

Large 0.387 ± 0.000 3.79 ± 0.00 0.056 ± 0.002 3.45 ± 0.15 0.041 ± 0.001 3.73 ± 0.22
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KITTI

BDD
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Negative correlation with detection accuracy

Possible thresholding via aleatoric uncertainty

KITTI BDD

MisDetections: IoU ≤ IoU Threshold

Correct Detections: IoU > Threshold
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calibrated?
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propagated through non-linear functions?

› Is the predicted uncertainty well-

calibrated?

› What correlations exist between the data  

and uncertainty?

Open Questions State of the Art

› Uncertainty is biased [6,7,8].

› Recalibration via isotonic regression 

[4,8,9] and temperature scaling [7,10].

› Incorrect propagation, no mention, only 

used during training [1,2,3,4]. 

› Sampling [5].

Missing propagation approach

Calibration not adapted to localization 

July 23, 2024



Public

ECML-PKDD 2023

Appendix
State of the Art

SCT © Continental AG 14

› How is the output distribution N(μ, σ2) 

propagated through non-linear functions?

› Is the predicted uncertainty well-

calibrated?

› What correlations exist between the data  

and uncertainty?

Open Questions State of the Art

› Occlusion[4,11,12].

› Distance in LiDAR data[11,12].

› Not with detection accuracy [11,12].

› Uncertainty is biased [6,7,8].

› Recalibration via isotonic regression 

[4,8,9] and temperature scaling [7,10].

› Incorrect propagation, no mention, only 

used during training [1,2,3,4]. 

› Sampling [5].

Missing propagation approach

Calibration not adapted to localization 

Uncertainty still unclear
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Normalizing Flows

A normalizing flow is a transformation of 

a distribution via a sequence of invertible 

and differentiable mappings [13]. *

𝑝𝐘ሺ𝐲) = 𝑝𝐙ሺ𝐟ሺ𝐲))|dⅇt Dfሺ𝐲)|

 = 𝑝𝐙ሺ𝐟ሺ𝐲))|dⅇt Dgሺ𝐟ሺ𝐲))|−1

ℎ = ⅇ
෠ℎℎ𝑎

∗

g1ሺ𝐲) = ⅇxpሺ𝐲)
 g2ሺy) = 𝑐y and 𝑐 ∈ ℝ

 ℎ = g2 ∘ g1ሺ෠ℎ) with 𝑐 = ℎ𝑎
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Normalizing Flows Log-Normal Approach

A normalizing flow is a transformation of 

a distribution via a sequence of invertible 

and differentiable mappings [13]. *

𝑝𝐘ሺ𝐲) = 𝑝𝐙ሺ𝐟ሺ𝐲))|dⅇt Dfሺ𝐲)|

 = 𝑝𝐙ሺ𝐟ሺ𝐲))|dⅇt Dgሺ𝐟ሺ𝐲))|−1

ℎ = ⅇ
෠ℎℎ𝑎

If ෡𝒉 follows a normal distribution, then ⅇ
෡𝒉 

follow a log-normal distribution [14].  

𝐸[ⅇ
෠ℎ] = ⅇ𝜇෡ℎ+

𝜎෡ℎ
2

2

 Var[ⅇ
෠ℎ] = ⅇ𝜎෡ℎ

2

− 1 ⅇ2𝜇෡ℎ+𝜎෡ℎ
2

 𝜇ℎ = 𝐸[ⅇ
෠ℎ] ⋅ ℎ𝑎

 𝜎ℎ
2 = Var[ⅇ

෠ℎ] ⋅ ℎ𝑎
2

∗

g1ሺ𝐲) = ⅇxpሺ𝐲)
 g2ሺy) = 𝑐y and 𝑐 ∈ ℝ

 ℎ = g2 ∘ g1ሺ෠ℎ) with 𝑐 = ℎ𝑎

 

𝑓 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎ሺ𝑥)
𝑒

−[logሺ𝑥)−𝜇]2

2𝜎2
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x10 Coordinate-

relative uncertainty
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Calibration reduces 

uncertainty

x10 Coordinate-

relative uncertainty
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Calibration reduces 

uncertainty

Per-class calibration shifts 

uncertainty towards 

classes with lower 

performance

x10 Coordinate-

relative uncertainty
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Calibration reduces 

uncertainty

Per-class calibration shifts 

uncertainty towards 

classes with lower 

performance

Relative calibration 

considers the effect of the 

different aspect ratios

x10 Coordinate-

relative uncertainty
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The Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) is a no-reference image 

quality assessment algorithm. 

BRISQUE:

• Is based on statistical models of natural image features, which 

are extracted from the image using a set of spatial and 

transform domain operators. The operators include discrete 

cosine transform (DCT), discrete wavelet transform (DWT), 

and local binary patterns (LBP), among others.

• Computes a score from the set of feature vectors that 

represents the degree of naturalness of the image, which 

correlates with the subjective quality of the image.

• Is a machine learning model, typically a Gaussian process or 

a support vector regression (SVR) model, trained on a large 

dataset of natural images TID2008, which were annotated with 

mean opinion scores (MOS) obtained from subjective 

experiments where human observers rated the perceived 

image quality.

• Ranges from 0 to 100, with higher scores indicating lower 

image quality and lower scores indicating higher image quality.

[15,16] 
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