

Overcoming the Limitations of Localization Uncertainty Efficient & Exact Non-Linear Post-Processing and Calibration

Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Azarm Nowzad and Sahin Albayrak

Results Visualization – KITTI

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects

Results Visualization – KITTI

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects High uncertainty for far, occluded and poorly detected objects

SCT © Continental AG **2**

Results Visualization – BDD100K

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects

Cntinental¹

ECML-PKDD 2023

SCT © Continental AG **3 3**

Results Visualization – BDD100K

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects High uncertainty for far, occluded

and poorly detected objects

Cntinental¹

ECML-PKDD 2023

SCT © Continental AG **3**

Observation noise, weather conditions, misleading situations

Input

Observation noise, weather conditions, misleading situations

Input \rightarrow Network

Rewrite box loss with loss attenuation

Negative log-likelihood
$$
\mathcal{L}_{NN} = \frac{1}{2N} \sum_{i=1}^{N} \frac{\|y_i^* - f(x_i)\|^2}{\sigma(x_i)^2} + \log \sigma(x_i)^2
$$

The uncertainty is learned as a function of the data

SCT © Continental AG

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

SCT © Continental AG **5 5**

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

SCT © Continental AG

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

SCT © Continental AG

Propagation Methods Illustration

 $\mathcal{L}_\text{NN} =$ 1 $2 \cdot 4N_{pos}$ \sum $i=1$ \boldsymbol{N} \sum $j=1$ 4 \overline{a} $\| \mathbf{y}_{ij}^* - \hat{\mu}_{j}(\mathbf{x}_i) \|^{2}$ Loss attenuation in EfficientDet $\mathcal{L}_{NN} = \frac{1}{2 \cdot 4N_{pos}} \sum_{i=1}^{N} \sum_{i=1}^{N} \left(\frac{N_{ij}N_{ij}N_{ij}N_{ij}}{\hat{\sigma}_{j}(\mathbf{x}_{i})^{2}} + \log \hat{\sigma}_{j}(\mathbf{x}_{i})^{2}\right) \cdot \mathbf{m}(\mathbf{y}_{ij}^{*})$

Propagation Methods Illustration

 $\mathcal{L}_\text{NN} =$ 1 $2 \cdot 4N_{pos}$ \sum $i=1$ \boldsymbol{N} \sum $j=1$ 4 \overline{a} $\| \mathbf{y}_{ij}^* - \hat{\mu}_{j}(\mathbf{x}_i) \|^{2}$ Loss attenuation in EfficientDet $\mathcal{L}_{NN} = \frac{1}{2 \cdot 4N_{pos}} \sum_{i=1}^N \sum_{i=1}^N \left(\frac{\|\mathbf{y}_{ij} - \mu_j(\mathbf{x}_{i})\|^2}{\hat{\sigma}_j(\mathbf{x}_i)^2} + \log \hat{\sigma}_j(\mathbf{x}_i)^2 \right) \cdot \mathbf{m}(\mathbf{y}_{ij}^*)$ with $\|\mathbf{y}_{ij}^* - [\hat{\mu}_j(\mathbf{x}_i) + \hat{\sigma}_j(\mathbf{x}_i)]$ $\hat{\sigma}_{j}(\mathbf{x}_{i})^{2}$ 2] $\|^{2}$ for *j* = 3,4

- **EfficientDet-D0** pre-trained on **COC**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- › **BDD100K:** 10 classes
- **KITTI: 7 classes**

- **ET**: Model exporting time in seconds
- **IT:** Inference time in milliseconds

- › **EfficientDet-D0** pre-trained on **COCO**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- › **BDD100K:** 10 classes
- › **KITTI:** 7 classes

AP: Average precision **RMSE**: Root-mean-square error **mIoU**: Average intersection over union **NLL**: Negative log-likelihood **ET**: Model exporting time in seconds **IT**: Inference time in milliseconds

RMSE

 \mathbf{mIoU}

 $\n **NULL**\n$

ETT

 (s)

 $IT \downarrow$

 (ms)

ECML-PKDD 2023

Method

 $AP⁺$

- **EfficientDet-D0** pre-trained on **COC**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- › **BDD100K:** 10 classes
- **KITTI: 7 classes**

IT: Inference time in milliseconds

- **EfficientDet-D0** pre-trained on **COCO**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- › **BDD100K:** 10 classes
- › **KITTI:** 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- **mIoU**: Average intersection over union
- **NLL**: Negative log-likelihood
- **ET**: Model exporting time in seconds
- **IT**: Inference time in milliseconds

- › **EfficientDet-D0** pre-trained on **COCO**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- › **BDD100K:** 10 classes
- › **KITTI:** 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- **mIoU**: Average intersection over union
- **NLL**: Negative log-likelihood
- **ET**: Model exporting time in seconds
- **IT**: Inference time in milliseconds

Increases localization performance

- › **EfficientDet-D0** pre-trained on **COCO**
- Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- **BDD100K:** 10 classes
- › **KITTI:** 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- **mIoU**: Average intersection over union
- **NLL**: Negative log-likelihood
- **ET**: Model exporting time in seconds
- **IT**: Inference time in milliseconds

Increases localization performance Faster than baseline and sampling

Cntinental¹

- › **EfficientDet-D0** pre-trained on **COCO**
- › Input resolution: **1024x512**
- Soft-NMS output is **reordered** based on **lowest MSE**
- **BDD100K:** 10 classes
- › **KITTI:** 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- **mIoU**: Average intersection over union
- **NLL**: Negative log-likelihood
- **ET**: Model exporting time in seconds
- **IT**: Inference time in milliseconds

Increases localization performance Faster than baseline and sampling Addresses the drawbacks of sampling

Continental¹

Calibration Is the predicted uncertainty well-calibrated?

Calibration Is the predicted uncertainty well-calibrated?

Calibration Is the predicted uncertainty well-calibrated?

Prediction allocation via **nearest-**
 Prediction allocation via **nearestneighbor** rather than thresholding:

- › For every **label**, a **corresponding box** is present.
- › Usually the one with the **highest classification score** is designated.
- Does not necessarily correspond to the **ground truth** based on **localization**.

Continental

Calibration Calibration Methods

Isotonic Regression

From one model to a model: Per-coordinate Per-class Per-coordinate + per-class

Calibration Calibration Methods

Non-decreasing approximation of a function

Predicted, MSE:1503

Isotonic, MSE:1139

From one model to a model: Per-coordinate Per-class Per-coordinate + per-class

Calibration Calibration Methods

Distribution of the localization error; expected is a Gaussian

Uncertainty is mis-calibrated

Distribution of the localization error; expected is a Gaussian

KITTI BDD

Uncertainty is mis-calibrated

Distribution of the localization error; expected is a Gaussian

KITTI BDD

Uncertainty is mis-calibrated Our FS losses outperform SOTA

Distribution of the localization error; expected is a Gaussian

KITTI BDD

Uncertainty is mis-calibrated Our FS losses outperform SOTA Per-coordinate and per-class calibration IR outperforms other methods

Distribution of the localization error; expected is a Gaussian

KITTI BDD

Uncertainty is mis-calibrated Our FS losses outperform SOTA Per-coordinate and per-class calibration IR outperforms other methods Relative calibration affects small objects

What correlations exist between the data and the uncertainty?

^{*}Quantile-based binning, normalized by bin with highest uncertainty

SCT © Continental AG **11**

What correlations exist between the data and the uncertainty?

*Quantile-based binning, normalized by bin with highest uncertainty

SCT © Continental AG **11**

What correlations exist between the data and the uncertainty?

*Quantile-based binning, normalized by bin with highest uncertainty

What correlations exist between the data and the uncertainty?

Cntinental¹

SCT © Continental AG **11**

Correlation Analysis – Misdetections

Negative correlation with detection accuracy Possible thresholding via aleatoric uncertainty

Loss attenuation for EfficientDet with **increased localization performance**.

Estimation Propagation ACAIIbration PREXplanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

› **Exact** and **fast** propagation. › **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Estimation Propagation ACAIIbration PREXplanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

› **Exact** and **fast** propagation. › **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

Estimation Propagation ACAIIbration PREXplanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

Exact and **fast** propagation. **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

- Negative correlation with **detection performance** and **image quality**.
- **Positive correlation with occlusion** and **object distance** in the real-world.

Estimation Propagation A Calibration PRIS Explanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

Exact and **fast** propagation. **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

- Negative correlation with **detection performance** and **image quality**.
- **Positive correlation with occlusion** and **object distance** in the real-world.

Future Work

› **Enhancing** object detection **safety** and **robustness**.

Estimation Propagation ACAIIbration PREXplanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

Exact and **fast** propagation. **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

- Negative correlation with **detection performance** and **image quality**.
- **Positive correlation with occlusion** and **object distance** in the real-world.

Future Work

- › **Enhancing** object detection **safety** and **robustness**.
- › **Deeper** model **understanding** with **more** uncertainty **types**.

Estimation Propagation A Calibration PRIS Explanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

Exact and **fast** propagation. **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

- Negative correlation with **detection performance** and **image quality**.
- **Positive correlation with occlusion** and **object distance** in the real-world.

Future Work

- › **Enhancing** object detection **safety** and **robustness**.
- › **Deeper** model **understanding** with **more** uncertainty **types**.
- › **Investigating** uncertainty **across domains**.

Estimation Propagation A Calibration PRIS Explanation

Loss attenuation for EfficientDet with **increased localization performance**.

Two decoding methods:

Exact and **fast** propagation. **Generalize** for any non-linear functions in regression networks, for **different equations** and **distributions**.

Extension of calibration methods: **Relative Percoordinate**, **per-class calibration** with isotonic regression produces **wellcalibrated uncertainties**.

- Negative correlation with **detection performance** and **image quality**.
- **Positive correlation with occlusion** and **object distance** in the real-world.

Future Work

- › **Enhancing** object detection **safety** and **robustness**.
- › **Deeper** model **understanding** with **more** uncertainty **types**.
- › **Investigating** uncertainty **across domains**.

Open Questions State of the Art

- › How is the **output distribution N(μ, σ 2)** propagated through **non-linear** functions?
- › Is the predicted **uncertainty wellcalibrated**?
- › What **correlations** exist between the **data** and **uncertainty**?

Open Questions State of the Art

- › How is the **output distribution N(μ, σ 2)** propagated through **non-linear** functions?
- › Is the predicted **uncertainty wellcalibrated**?
- › What **correlations** exist between the **data** and **uncertainty**?

Missing propagation approach

- › **Incorrect** propagation, **no mention**, **only**
- used during **training** [1,2,3,4].

> Sampling [5].

Open Questions State of the Art

- › How is the **output distribution N(μ, σ 2)** propagated through **non-linear** functions?
- › Is the predicted **uncertainty wellcalibrated**?
- › What **correlations** exist between the **data** and **uncertainty**?

Missing propagation approach Calibration not adapted to localization

- › **Incorrect** propagation, **no mention**, **only**
- used during **training** [1,2,3,4].
- **> Sampling [5].**
- › Uncertainty is **biased** [6,7,8].
- **Recalibration** via isotonic regression $[4,8,9]$ and temperature scaling $[7,10]$.

Open Questions State of the Art

› How is the **output distribution N(μ, σ 2)** propagated through **non-linear** functions?

› Is the predicted **uncertainty wellcalibrated**?

› What **correlations** exist between the **data** and **uncertainty**?

› **Occlusion**[4,11,12]. **Distance** in LiDAR data_[11,12]. › **Not** with detection accuracy [11,12]. › Uncertainty is **biased** [6,7,8]. › **Recalibration** via isotonic regression $[4,8,9]$ and temperature scaling $[7,10]$. › **Incorrect** propagation, **no mention**, **only** used during **training** [1,2,3,4]. **> Sampling [5].**

Missing propagation approach Calibration not adapted to localization Uncertainty still unclear

Public

Appendix Propagation Methods

Normalizing Flows

A **normalizing flow** is a **transformation** of a **distribution** via a **sequence** of invertible and differentiable **mappings** [13]. *

$$
h = e^{\hat{h}}h_a
$$

\n
$$
g_1(y) = \exp(y)
$$

\n
$$
g_2(y) = cy \text{ and } c \in \mathbb{R}
$$

\n
$$
h = g_2 \circ g_1(\hat{h}) \text{ with } c = h_a
$$

*
$$
p_Y(y) = p_Z(f(y)) |\text{det } Df(y)|
$$

= $p_Z(f(y)) |\text{det } Dg(f(y))|^{-1}$

Continental

ECML-PKDD 2023

SCT © Continental AG **15**
15
15

Appendix Propagation Methods

A **normalizing flow** is a **transformation** of a **distribution** via a **sequence** of invertible and differentiable **mappings** [13]. *

$$
h = e^{\hat{h}} h_a
$$

\n
$$
g_1(y) = \exp(y)
$$

\n
$$
g_2(y) = cy \text{ and } c \in \mathbb{R}
$$

\n
$$
h = g_2 \circ g_1(\hat{h}) \text{ with } c = h_a
$$

\n* $p_Y(y) = p_Z(f(y)) |\text{det } Df(y)|$
\n
$$
= p_Z(f(y)) |\text{det } Dg(f(y))|^{-1}
$$

Normalizing Flows Log-Normal Approach

If \widehat{h} follows a normal distribution, then $e^{\widehat{h}}$ follow a **log-normal** distribution [14].

$$
f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma(x)} e^{-\frac{[\log(x) - \mu]^2}{2\sigma^2}}
$$

$$
E[e^{\hat{h}}] = e^{\mu_{\hat{h}} + \frac{\sigma_{\hat{h}}^2}{2}}
$$

$$
Var[e^{\hat{h}}] = [e^{\sigma_{\hat{h}}^2} - 1] e^{2\mu_{\hat{h}} + \sigma_{\hat{h}}^2}
$$

$$
\mu_h = E[e^{\hat{h}}] \cdot h_a
$$

$$
\sigma_h^2 = Var[e^{\hat{h}}] \cdot h_a^2
$$

Continental¹

ECML-PKDD 2023

SCT © Continental AG **15 15**

x10 Coordinaterelative uncertainty Output

Calibration reduces uncertainty

Calibration reduces uncertainty

Per-class calibration shifts uncertainty towards classes with lower performance

Calibration reduces uncertainty

Per-class calibration shifts uncertainty towards classes with lower performance

Relative calibration considers the effect of the different aspect ratios

SCT © Continental AG **16**

Appendix BRISQUE Score

The Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is a no-reference image quality assessment algorithm.

BRISQUE:

- Is based on statistical models of natural image features, which are extracted from the image using a set of spatial and transform domain operators. The operators include discrete cosine transform (DCT), discrete wavelet transform (DWT), and local binary patterns (LBP), among others.
- Computes a score from the set of feature vectors that represents the degree of naturalness of the image, which correlates with the subjective quality of the image.
- Is a machine learning model, typically a Gaussian process or a support vector regression (SVR) model, trained on a large dataset of natural images TID2008, which were annotated with mean opinion scores (MOS) obtained from subjective experiments where human observers rated the perceived image quality.
- Ranges from 0 to 100, with higher scores indicating lower image quality and lower scores indicating higher image quality.

[15,16]

Appendix Sources

- 1. Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 502–511, 2019.
- 2. Ali Harakeh, Michael Smart, and Steven L Waslander. Bayesod: A bayesian approach for uncertainty estimation in deep object detectors. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 87–93. IEEE, 2020.
- 3. Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box regression with uncertainty for accurate object detection. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pages 2888–2897, 2019.
- 4. Florian Kraus and Klaus Dietmayer. Uncertainty estimation in one-stage object detection. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 53– 60. IEEE, 2019.
- 5. Michael Truong Le, Frederik Diehl, Thomas Brunner, and Alois Knol. Uncertainty estimation for deep neural object detectors in safety-critical applications. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 3873–3878. IEEE, 2018.
- 6. Di Feng, Lars Rosenbaum, Claudius Glaeser, Fabian Timm, and Klaus Dietmayer. Can we trust you? on calibration of a probabilistic object detector for autonomous driving. arXiv preprint arXiv:1909.12358, 2019.
- 7. Max-Heinrich Laves, Sontje Ihler, Jacob F Fast, L¨uder A Kahrs, and Tobias Ortmaier. Recalibration of aleatoric and epistemic regression uncertainty in medical imaging. arXiv preprint arXiv:2104.12376, 2021.
- 8. Buu Phan, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Taylor Denouden, and Sachin Vernekar. Calibrating uncertainties in object localization task. arXiv preprint arXiv:1811.11210, 2018.
- 9. Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning using calibrated regression. In International conference on machine learning, pages 2796– 2804. PMLR, 2018.
- 10. Max-Heinrich Laves, Sontje Ihler, Karl-Philipp Kortmann, and Tobias Ortmaier. Well-calibrated model uncertainty with temperature scaling for dropout variational inference. arXiv preprint arXiv:1909.13550, 2019.
- 11. Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards safe autonomous driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection. In 2018 21st international conference on intelligent transportation systems (ITSC), pages 3266–3273. IEEE, 2018.
- 12. Di Feng, Lars Rosenbaum, Fabian Timm, and Klaus Dietmayer. Leveraging heteroscedastic aleatoric uncertainties for robust real-time lidar 3d object detection. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1280–1287. IEEE, 2019.
- 13. Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979, 2020.
- 14. William W. S. Balakrishnan, N.and Chen. Lognormal Distributions and Properties, pages 5–6. Springer US, Boston, MA, 1999.
- 15. Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing 21.12 (2012): 4695-4708.
- 16. Kushashwa Ravi Shrimali. Image Quality Assessment: BRISQUE. URL: [https://learnopencv.com/image-quality-assessment-brisque/.](https://learnopencv.com/image-quality-assessment-brisque/) Accessed: 06.09.2023