

Overcoming the Limitations of Localization Uncertainty Efficient & Exact Non-Linear Post-Processing and Calibration

Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Azarm Nowzad and Sahin Albayrak

Results Visualization – KITTI

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects

Results Visualization – KITTI

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects High uncertainty for far, occluded and poorly detected objects

SCT © Continental AG

0.10 Ho

Results Visualization – BDD100K

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects

🔞 ntinental 🏂

ECML-PKDD 2023

SCT © Continental AG

Results Visualization – BDD100K

Top 10 frames with lowest and highest uncertainty out of 100 frames

Low uncertainty for close and clear objects

High uncertainty for far, occluded and poorly detected objects

ECML-PKDD 2023

SCT © Continental AG

Observation noise,
weather conditions,
misleading situations

Input

Observation noise, weather conditions, misleading situations

Input → Network

Rewrite box loss with loss attenuation

Negative log-likelihood
$$\mathcal{L}_{NN} = \frac{1}{2N} \sum_{i=1}^{N} \frac{\|\mathbf{y}_i^* - \mathbf{f}(\mathbf{x}_i)\|^2}{\sigma(\mathbf{x}_i)^2} + \log \sigma(\mathbf{x}_i)^2$$

The uncertainty is learned as a function of the data

SCT © Continental AG

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

SCT © Continental AG

Use Case Definition

How is the output distribution $\mathcal{N}(\mu, \sigma^2)$ propagated through non-linear functions?

Anchor-relative center coordinates (\hat{x}, \hat{y}) , width \hat{w} and height \hat{h} . Anchor center coordinates (x_a, y_a) , width w_a and height h_a .

SCT © Continental AG

Propagation Methods Illustration

Loss attenuation in EfficientDet $\mathcal{L}_{NN} = \frac{1}{2 \cdot 4N_{pos}} \sum_{i=1}^{N} \sum_{j=1}^{4} \left(\frac{\|\mathbf{y}_{ij}^* - \hat{\mu}_{j}(\mathbf{x}_{i})\|^2}{\hat{\sigma}_{j}(\mathbf{x}_{i})^2} + \log \hat{\sigma}_{j}(\mathbf{x}_{i})^2 \right) \cdot \mathbf{m}(\mathbf{y}_{ij}^*)$

Propagation Methods Illustration

Loss attenuation in EfficientDet $\mathcal{L}_{NN} = \frac{1}{2 \cdot 4N_{pos}} \sum_{i=1}^{N} \sum_{j=1}^{4} \left(\frac{\|\mathbf{y}_{ij}^* - \hat{\mu}_{\mathbf{j}}(\mathbf{x}_i) \|^2}{\hat{\sigma}_{\mathbf{j}}(\mathbf{x}_i)^2} + \log \hat{\sigma}_{\mathbf{j}}(\mathbf{x}_i)^2 \right) \cdot \mathbf{m}(\mathbf{y}_{ij}^*) \quad \text{with } \|\mathbf{y}_{ij}^* - [\hat{\mu}_{\mathbf{j}}(\mathbf{x}_i) + \frac{\hat{\sigma}_{\mathbf{j}}(\mathbf{x}_i)^2}{2}] \|^2 \text{ for } j = 3,4$

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP : Average precision
RMSE: Root-mean-square error
mIoU: Average intersection over union
NLL: Negative log-likelihood

- ET: Model exporting time in seconds
- IT: Inference time in milliseconds

	Method	$\mathbf{AP}\uparrow$	RMSE↓	mIoU↑	$\mathbf{NLL}{\downarrow}$	${{\rm ET} \atop {\rm (s)}}$	$egin{array}{c} { m IT} \downarrow \ { m (ms)} \end{array}$	
$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^2}{2}} \odot W_{\rm o}$	Baseline	72.8 ± 0.1	$\textbf{5.07} \pm \textbf{0.1}$	90.1 ± 0.1	-	$115.6~\pm~3$	34.8 ± 4	
$\mathbf{F}\mathbf{w} = \mathbf{C}$ $\mathbf{v} = \mathbf{C}\mathbf{w}_{\mathbf{a}}$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	L-norm N-flow	$\begin{array}{c} {\bf 73.3} \pm 0.5 \\ {\bf 73.3} \pm 0.5 \end{array}$	5.17 ± 0.2 5.17 ± 0.2	90.3 ± 0.0 90.3 ± 0.0	3.22 ± 0.0 3.22 ± 0.0	$\begin{array}{c} {\bf 115.6} \pm {\bf 2} \\ {\bf 116.6} \pm {\bf 1} \end{array}$	31.0 ± 3 31.6 \pm 3	КІТТ
	Samp30 Samp100 Samp1000	68.6 ± 0.4 71.8 ± 0.5 73.1 ± 0.5	5.43 ± 0.1 5.23 ± 0.1 5.18 ± 0.2	$\begin{array}{c} 88.7 \pm 0.1 \\ 90.1 \pm 0.0 \\ \textbf{90.4} \pm \textbf{0.0} \end{array}$	$\begin{array}{c} \textbf{3.19} \pm \textbf{0.0} \\ 3.20 \pm 0.0 \\ 3.21 \pm 0.0 \end{array}$	118.8 ± 2 117.4 ± 4 117.9 ± 4	34.5 ± 3 47.0 ± 3 187.4 ± 4	
$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^2}{2}} e^{\rm w}$	Baseline	$\textbf{24.7}\pm\textbf{0.1}$	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
FW = C $/ = 0.04$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
	L-norm N-flow	24.4 ± 0.1 24.4 ± 0.1	$\begin{array}{c} {\bf 8.53} \pm 0.2 \\ {\bf 8.53} \pm 0.2 \end{array}$	$\begin{array}{c} {\bf 67.7} \pm {\bf 0.0} \\ {\bf 67.7} \pm {\bf 0.0} \end{array}$	$\begin{array}{c} {\bf 3.69} \pm 0.0 \\ {\bf 3.69} \pm 0.0 \end{array}$	$\begin{array}{c} {\bf 115.3} \pm {\bf 1} \\ {\bf 116.4} \pm {\bf 1} \end{array}$	30.6 ± 4 31.0 ± 3	BDD
	Samp30 Samp100	21.0 ± 0.1 23.2 ± 0.1	9.02 ± 0.2 8.68 ± 0.2	64.7 ± 0.0 66.7 ± 0.0	3.70 ± 0.0 3.69 ± 0.0	118.0 ± 3 117.0 ± 3	33.6 ± 4 45.4 ± 4	
	Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	$\textbf{3.69}\pm\textbf{0.0}$	118.4 ± 3	187.3 ± 4	

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision
RMSE: Root-mean-square error
mIoU: Average intersection over union
NLL: Negative log-likelihood
ET: Model exporting time in seconds

IT: Inference time in milliseconds

	Method	$\mathbf{AP}\uparrow$	RMSE↓	mIoU↑	NLL↓	${\bf ET} {\downarrow \atop {\bf (s)}}$	$egin{array}{c} { m IT} \downarrow \ { m (ms)} \end{array}$
$\mu_{\rm m} = e^{\hat{\mu}_{\rm W} + \frac{\hat{\sigma}_{\rm W}^2}{2}} e^{\rm W}$	Baseline	72.8 ± 0.1	$\textbf{5.07} \pm \textbf{0.1}$	90.1 ± 0.1	-	$115.6~\pm~3$	34.8 ± 4
PW = C / - OWa	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3
Our methods	L-norm N-flow	$\begin{array}{c} {\bf 73.3} \pm 0.5 \\ {\bf 73.3} \pm 0.5 \end{array}$	5.17 ± 0.2 5.17 ± 0.2	90.3 ± 0.0 90.3 ± 0.0	3.22 ± 0.0 3.22 ± 0.0	$\frac{115.6 \pm 2}{116.6 \pm 1}$	${f 31.0\pm3}\ { m 31.6\pm3}$
	Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	$\textbf{3.19}\pm\textbf{0.0}$	118.8 ± 2	34.5 ± 3
	Samp100	71.8 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3
	Samp1000	73.1 ± 0.5	5.18 ± 0.2	$\textbf{90.4} \pm \textbf{0.0}$	3.21 ± 0.0	117.9 ± 4	187.4 ± 4
$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^Z}{2}} \odot W_{\rm o}$	Baseline	$\textbf{24.7}\pm\textbf{0.1}$	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4
$\mathbf{F}\mathbf{w} = \mathbf{c}$ $\mathbf{v} = \mathbf{c}\mathbf{w}_{\mathbf{a}}$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$
Our methods	L-norm N-flow	24.4 ± 0.1 24.4 ± 0.1	8.53 ± 0.2 8.53 ± 0.2	67.7 ± 0.0 67.7 ± 0.0	3.69 ± 0.0 3.69 ± 0.0	115.3 ± 1 116.4 ± 1	30.6 ± 4 31.0 ± 3
	11-110 W	24.4 ± 0.1	0.00 ± 0.2	01.1 ± 0.0	0.05 ± 0.0	110.7 1	51.0 ± 5
	Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	370 ± 0.0	118.0 ± 3	33.6 ± 4
	Samp30 Samp100	21.0 ± 0.1 23.2 ± 0.1	9.02 ± 0.2 8.68 ± 0.2	64.7 ± 0.0 66.7 ± 0.0	3.70 ± 0.0 3.69 ± 0.0	118.0 ± 3 117.0 ± 3	33.6 ± 4 45.4 ± 4

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision RMSE: Root-mean-square error mIoU: Average intersection over union NLL: Negative log-likelihood ET: Model exporting time in seconds

IT: Inference time in milliseconds

0		Method	$\mathbf{AP}\uparrow$	RMSE↓	$mIoU\uparrow$	$\mathbf{NLL}{\downarrow}$	${\bf ET} {\downarrow \atop {\bf (s)}}$	$egin{array}{c} { m IT} \downarrow \ { m (ms)} \end{array}$	
4	$\mu_{\rm ev} = e^{\hat{\mu}_{\rm W} + \frac{\hat{\sigma}_{\rm W}^2}{2}} e^{\rm W}$	Baseline	72.8 ± 0.1	$\boldsymbol{5.07} \pm \boldsymbol{0.1}$	90.1 ± 0.1	-	115.6 ± 3	34.8 ± 4	
	$m_{\rm W} = c$ / $- 0m_{\rm a}$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	Our mothods	L-norm	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	115.6 ± 2	$\textbf{31.0}\pm\textbf{3}$	
	Ourmethous	N-flow	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	116.6 ± 1	31.6 ± 3	KIIII
		Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	$\textbf{3.19}\pm\textbf{0.0}$	118.8 ± 2	34.5 ± 3	
		Samp100	71.8 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3	
		Samp1000	73.1 ± 0.5	5.18 ± 0.2	90.4 ± 0.0	3.21 ± 0.0	117.9 ± 4	187.4 ± 4	
	$\mu_{\rm ev} = e^{\hat{\mu}_{\rm W} + \frac{\hat{\sigma}_{\rm W}^2}{2}} e^{\rm W_{\rm e}}$	Baseline	$\textbf{24.7}\pm\textbf{0.1}$	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
	PW = C $/ = 0.04$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
		L-norm	24.4 ± 0.1	8.53 ± 0.2	67.7 ± 0.0	3.69 ± 0.0	115.3 ± 1	30.6 ± 4	
	Our methods	N-flow	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	$\textbf{67.7} \pm \textbf{0.0}$	$\textbf{3.69}\pm\textbf{0.0}$	116.4 ± 1	31.0 ± 3	BDD
		Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	3.70 ± 0.0	118.0 ± 3	33.6 ± 4	
		Samp100	23.2 ± 0.1	8.68 ± 0.2	66.7 ± 0.0	$\textbf{3.69} \pm \textbf{0.0}$	117.0 ± 3	45.4 ± 4	
		Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	$\textbf{3.69}\pm\textbf{0.0}$	118.4 ± 3	187.3 ± 4	

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- mIoU: Average intersection over union
- NLL: Negative log-likelihood
- ET: Model exporting time in seconds
- IT: Inference time in milliseconds

כ		Method	$\mathbf{AP}\uparrow$	RMSE↓	${f mIoU}\uparrow$	$\mathbf{NLL}\!\!\downarrow$	${{\rm ET} \atop {\rm (s)}}$	$egin{array}{c} { m IT} \downarrow \ { m (ms)} \end{array}$	
	$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^2}{2}} \circ W_{\rm s}$	Baseline	72.8 ± 0.1	$\textbf{5.07} \pm \textbf{0.1}$	90.1 ± 0.1	-	$115.6~\pm~3$	34.8 ± 4	
	FW = C $/ - OWa$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	Our methods	L-norm	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	115.6 ± 2	$\textbf{31.0}\pm\textbf{3}$	
	Our methods	N-flow	$\textbf{73.3}\pm0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	116.6 ± 1	31.6 ± 3	KIIII
	SOTA	Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	$\textbf{3.19}\pm\textbf{0.0}$	118.8 ± 2	34.5 ± 3	
	SOTA. Sampling	Samp100	71.8 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3	
	Camping	Samp1000	73.1 ± 0.5	5.18 ± 0.2	90.4 ± 0.0	3.21 ± 0.0	117.9 ± 4	187.4 ± 4	
	$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \hat{\sigma}_{\rm w}^{Z}} \odot W_{\rm o}$	Baseline	$\textbf{24.7}\pm\textbf{0.1}$	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
	$FW = C$ $\gamma = 0.04$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
	Our mothodo	L-norm	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	67.7 ± 0.0	$\textbf{3.69}\pm\textbf{0.0}$	115.3 ± 1	30.6 ± 4	
	Our methods	N-flow	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	$\textbf{67.7} \pm \textbf{0.0}$	$\textbf{3.69}\pm\textbf{0.0}$	116.4 ± 1	31.0 ± 3	BDD
		Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	3.70 ± 0.0	118.0 ± 3	33.6 ± 4	
	Sora	Samp100	23.2 ± 0.1	8.68 ± 0.2	66.7 ± 0.0	$\textbf{3.69} \pm \textbf{0.0}$	117.0 ± 3	45.4 ± 4	
	Camping	Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	3.69 ± 0.0	118.4 ± 3	187.3 ± 4	

SCT © Continental AG

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- mIoU: Average intersection over union
- NLL: Negative log-likelihood
- ET: Model exporting time in seconds
- IT: Inference time in milliseconds

)		Method	$\mathbf{AP}\uparrow$	RMSE↓	mIoU↑	$\mathbf{NLL}{\downarrow}$	$\begin{array}{c} \mathbf{ET} \downarrow \\ \mathbf{(s)} \end{array}$	$egin{array}{c} { m IT} \downarrow \ { m (ms)} \end{array}$	
	$\mu_{\rm m} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^2}{2}} e^{\rm w}$	Baseline	72.8 ± 0.1	5.07 ± 0.1	90.1 ± 0.1	-	115.6 ± 3	34.8 ± 4	
	$m_{\rm W} = c$ / - $0m_{\rm a}$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	Our mothods	L-norm	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	115.6 ± 2	$\textbf{31.0}\pm\textbf{3}$	
	Our methods	N-flow	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	116.6 ± 1	31.6 ± 3	KITTI
	SOTA	Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	3.19 ± 0.0	118.8 ± 2	34.5 ± 3	
	Sampling	Samp100	71.8 ± 0.5 72.1 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3	
		Samp1000	73.1 ± 0.3	5.18 ± 0.2	90.4 ± 0.0	3.21 ± 0.0	117.9 ± 4	187.4 ± 4	
	$\mu_{\rm w} = {\rm e}^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^Z}{2}} \odot {\rm W}_{\rm s}$	Baseline	24.7 ± 0.1	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
	$\mathbf{F} \mathbf{W} = \mathbf{C}$ $\mathbf{V} = \mathbf{C} \mathbf{W}_{\mathbf{a}}$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
	Our mothodo	L-norm	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	67.7 ± 0.0	$\textbf{3.69}\pm\textbf{0.0}$	115.3 ± 1	30.6 ± 4	
	Our methous	N-flow	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	67.7 ± 0.0	$\textbf{3.69}\pm\textbf{0.0}$	116.4 ± 1	31.0 ± 3	RDD
		Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	3.70 ± 0.0	118.0 ± 3	33.6 ± 4	
	SOTA: Sampling	Samp100	23.2 ± 0.1	8.68 ± 0.2	66.7 ± 0.0	3.69 ± 0.0	117.0 ± 3	45.4 ± 4	
	Camping	Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	$ 3.69\pm0.0$	118.4 ± 3	187.3 ± 4	

Increases localization performance

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- mIoU: Average intersection over union
- NLL: Negative log-likelihood
- ET: Model exporting time in seconds
- IT: Inference time in milliseconds

)		Method	$\mathbf{AP}\uparrow$	RMSE↓	mIoU↑	$\overline{\mathbf{NLL}}$	${f ET} \downarrow \ {f (s)}$	$\mathrm{IT} \downarrow \ \mathrm{(ms)}$	
	$\mu = e^{\hat{\mu}_{w} + \frac{\hat{\sigma}_{w}^{2}}{2}} e^{w}$	Baseline	72.8 ± 0.1	5.07 ± 0.1	90.1 ± 0.1	-	115.6 ± 3	34.8 ± 4	
	$\mu_{\rm W} = c$ / 2 0 $\mu_{\rm a}$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	Our methods	L-norm	73.3 ± 0.5	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	115.6 ± 2	31.0 ± 3	
	Our methods	N-flow	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	116.6 ± 1	31.6 ± 3	KIIII
	SOTA	Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	$\textbf{3.19}\pm\textbf{0.0}$	118.8 ± 2	34.5 ± 3	
	SOTA: Sampling	Samp100	71.8 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3	
	Gamping	Samp1000	73.1 ± 0.5	5.18 ± 0.2	90.4 ± 0.0	3.21 ± 0.0	117.9 ± 4	187.4 ± 4	
	$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}^2}{2}} \circ W_{\rm s}$	Baseline	24.7 ± 0.1	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
	PW = C / - OWa	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
	Our mothodo	L-norm	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	67.7 ± 0.0	3.69 ± 0.0	115.3 ± 1	30.6 ± 4	
	Our methous	N-flow	24.4 ± 0.1	8.53 ± 0.2	67.7 ± 0.0	$\textbf{3.69}\pm\textbf{0.0}$	116.4 ± 1	31.0 ± 3	BDD
	0.074	Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	3.70 ± 0.0	118.0 ± 3	33.6 ± 4	
	SUIA: Sampling	Samp100	23.2 ± 0.1	8.68 ± 0.2	66.7 ± 0.0	$ig 3.69\pm0.0$	117.0 ± 3	45.4 ± 4	
	Sampling	Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	$ 3.69\pm0.0$	118.4 ± 3	187.3 ± 4	

Increases localization performance Faster than baseline and sampling

@ntinental **☆**

ECML-PKDD 2023

SCT © Continental AG

- > EfficientDet-D0 pre-trained on COCO
- > Input resolution: **1024x512**
- Soft-NMS output is reordered based on lowest MSE
- > BDD100K: 10 classes
- > KITTI: 7 classes

AP: Average precision

- **RMSE**: Root-mean-square error
- mIoU: Average intersection over union
- NLL: Negative log-likelihood
- ET: Model exporting time in seconds
- IT: Inference time in milliseconds

)		Method	$\mathbf{AP}\uparrow$	RMSE↓	mIoU↑	$\mathbf{NLL}{\downarrow}$	${f ET} \downarrow \ {f (s)}$	$\mathrm{IT} \downarrow \ \mathrm{(ms)}$	
	$\mu_{\rm w} = e^{\hat{\mu}_{\rm w} + \frac{\hat{\sigma}_{\rm w}}{2}} \circ W_{\rm w}$	Baseline	72.8 ± 0.1	5.07 ± 0.1	90.1 ± 0.1	-	$\textbf{115.6}\pm\textbf{3}$	34.8 ± 4	
	Fw = c $/ = 0.0$	FalseDec	73.1 ± 0.5	5.27 ± 0.1	90.3 ± 0.1	4.27 ± 0.1	116.0 ± 3	31.1 ± 3	
	Our methods	L-norm	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	115.6 ± 2	31.0 ± 3	
	Our methods	N-flow	$\textbf{73.3} \pm 0.5$	5.17 ± 0.2	90.3 ± 0.0	3.22 ± 0.0	116.6 ± 1	31.6 ± 3	KITT
	COTA.	Samp30	68.6 ± 0.4	5.43 ± 0.1	88.7 ± 0.1	$\textbf{3.19}\pm\textbf{0.0}$	118.8 ± 2	34.5 ± 3	
	SOTA: Sampling	Samp100	71.8 ± 0.5	5.23 ± 0.1	90.1 ± 0.0	3.20 ± 0.0	117.4 ± 4	47.0 ± 3	
	Sampling	Samp1000	73.1 ± 0.5	5.18 ± 0.2	90.4 ± 0.0	3.21 ± 0.0	117.9 ± 4	187.4 ± 4	
	$\mu_{\rm w} = {\rm e}^{\widehat{\mu}_{\rm w} + \frac{\widehat{\sigma}_{\rm w}^Z}{2}} {\rm o}_{\rm w}$	Baseline	24.7 ± 0.1	8.96 ± 0.2	66.6 ± 1.6	-	115.7 ± 3	33.0 ± 4	
	$\mathbf{P}\mathbf{W} = \mathbf{C}$ $\mathbf{V} = \mathbf{C}\mathbf{M}_{\mathbf{a}}$	FalseDec	23.9 ± 0.2	8.81 ± 0.2	67.3 ± 0.0	4.40 ± 0.1	115.9 ± 2	$\textbf{30.4}\pm\textbf{4}$	
	Our methode	L-norm	24.4 ± 0.1	8.53 ± 0.2	67.7 ± 0.0	3.69 ± 0.0	115.3 ± 1	30.6 ± 4	
	Our methods	N-flow	24.4 ± 0.1	$\textbf{8.53}\pm\textbf{0.2}$	67.7 ± 0.0	$\textbf{3.69}\pm\textbf{0.0}$	116.4 ± 1	31.0 ± 3	BDD
		Samp30	21.0 ± 0.1	9.02 ± 0.2	64.7 ± 0.0	3.70 ± 0.0	118.0 ± 3	33.6 ± 4	
	SUIA: Sampling	Samp100	23.2 ± 0.1	8.68 ± 0.2	66.7 ± 0.0	$ig 3.69\pm0.0$	117.0 ± 3	45.4 ± 4	
	Sampling	Samp1000	24.2 ± 0.1	8.55 ± 0.2	67.6 ± 0.1	$ 3.69\pm0.0$	118.4 ± 3	187.3 ± 4	

Increases localization performance Faster than baseline and sampling Addresses the drawbacks of sampling

@ntinental **☆**

SCT © Continental AG

Calibration Is the predicted uncertainty well-calibrated?

Calibration Is the predicted uncertainty well-calibrated?

Calibration Is the predicted uncertainty well-calibrated?

Prediction allocation via nearestneighbor rather than thresholding:

- > For every **label**, a **corresponding box** is present.
- Usually the one with the highest classification score is designated.
- Does not necessarily correspond to the ground truth based on localization.

Ontinental

SCT © Continental AG

Calibration Calibration Methods

Isotonic Regression

From one model to a model: Per-coordinate Per-class Per-coordinate + per-class

Calibration Calibration Methods

Non-decreasing approximation of a function Predicted, MSE:1503 • Isotonic, MSE:1139

From one model to a model: Per-coordinate Per-class Per-coordinate + per-class

Isotonic Regression

Calibration Calibration Methods

Public

Distribution of the localization error; expected is a Gaussian

Uncertainty is mis-calibrated

Distribution of the localization error; expected is a Gaussian

${\bf Method}$	$ $ RMSUE \downarrow	ECE↓	$\mathbf{NLL}{\downarrow}$	$\mathbf{Sharp} \!\!\!\downarrow$	RMSUE↓	$\mathbf{ECE}{\downarrow}$	$\mathbf{NLL}{\downarrow}$	Sharp↓
Uncalibrated	13.0 ± 0.0	0.384 ± 0.000	3.22 ± 0.0	14.9 ± 0.0	15.1 ± 0.1	0.323 ± 0.000	3.69 ± 0.0	17.22 ± 0.0
FS NLL	5.0 ± 0.3	0.194 ± 0.021	$\textbf{2.51}\pm\textbf{0.1}$	4.7 ± 0.5	9.4 ± 0.4	0.217 ± 0.008	3.46 ± 0.0	9.72 ± 0.4
FS MAUE	4.6 ± 0.2	0.047 ± 0.001	3.14 ± 0.4	$\textbf{2.5}\pm\textbf{0.0}$	7.5 ± 0.3	0.026 ± 0.001	4.72 ± 0.2	4.28 ± 0.0
FS RMSUE	4.6 ± 0.2	0.088 ± 0.003	2.79 ± 0.2	3.0 ± 0.0	7.6 ± 0.3	0.074 ± 0.000	6.43 ± 0.3	$\textbf{3.21}\pm\textbf{0.0}$
Rel. FS RMSUE	7.2 ± 0.1	0.306 ± 0.002	2.74 ± 0.0	8.3 ± 0.1	8.5 ± 0.3	0.175 ± 0.003	3.50 ± 0.1	8.06 ± 0.1
Abs. IR	4.5 ± 0.2	0.032 ± 0.001	3.15 ± 0.3	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.5 ± 0.3	0.027 ± 0.001	4.60 ± 0.1	4.09 ± 0.0
Abs. IR CL	4.4 ± 0.2	0.029 ± 0.001	2.86 ± 0.2	2.7 ± 0.0	7.4 ± 0.3	0.026 ± 0.001	4.39 ± 0.1	4.23 ± 0.0
Abs. IR PCo	4.5 ± 0.2	0.032 ± 0.001	3.03 ± 0.2	2.6 ± 0.0	7.5 ± 0.3	0.027 ± 0.001	4.57 ± 0.2	4.11 ± 0.0
Abs. IR PC o CL	4.3 ± 0.2	0.028 ± 0.000	2.70 ± 0.1	2.9 ± 0.0	7.4 ± 0.3	0.025 ± 0.001	4.36 ± 0.1	4.33 ± 0.0
Rel. IR	4.5 ± 0.2	0.027 ± 0.001	3.06 ± 0.3	$\boldsymbol{2.5\pm0.0}$	7.4 ± 0.3	0.018 ± 0.001	4.52 ± 0.1	4.07 ± 0.0
Rel. IR CL	4.4 ± 0.2	0.026 ± 0.001	2.78 ± 0.2	3.1 ± 0.4	$\textbf{7.3}\pm\textbf{0.3}$	$\textbf{0.017} \pm \textbf{0.000}$	4.29 ± 0.1	4.24 ± 0.0
Rel. IR PCo	4.5 ± 0.2	0.027 ± 0.001	3.03 ± 0.2	$\textbf{2.5} \pm \textbf{0.1}$	7.4 ± 0.3	0.018 ± 0.000	4.49 ± 0.1	4.08 ± 0.0
Rel. IR PCo CL	4.4 ± 0.3	$\textbf{0.025}\pm\textbf{0.000}$	2.69 ± 0.2	3.2 ± 0.5	$\textbf{7.3}\pm\textbf{0.3}$	$\textbf{0.017} \pm \textbf{0.000}$	4.23 ± 0.1	4.27 ± 0.0

KITTI

Uncertainty is mis-calibrated

10

Distribution of the localization error; expected is a Gaussian

Method	RMSUE↓	ECE↓	NLL↓	$\mathbf{Sharp}{\downarrow}$	RMSUE↓	ECE↓	$\mathbf{NLL}{\downarrow}$	Sharp↓
Uncalibrated	13.0 ± 0.0	0.384 ± 0.000	3.22 ± 0.0	14.9 ± 0.0	15.1 ± 0.1	0.323 ± 0.000	3.69 ± 0.0	17.22 ± 0.0
FS NLL	5.0 ± 0.3	0.194 ± 0.021	2.51 ± 0.1	4.7 ± 0.5	9.4 ± 0.4	0.217 ± 0.008	$\textbf{3.46}\pm\textbf{0.0}$	9.72 ± 0.4
FS MAUE	4.6 ± 0.2	0.047 ± 0.001	3.14 ± 0.4	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.5 ± 0.3	0.026 ± 0.001	4.72 ± 0.2	4.28 ± 0.0
FS RMSUE	4.6 ± 0.2	0.088 ± 0.003	2.79 ± 0.2	3.0 ± 0.0	7.6 ± 0.3	0.074 ± 0.000	6.43 ± 0.3	$\textbf{3.21}\pm\textbf{0.0}$
Rel. FS RMSUE	7.2 ± 0.1	0.306 ± 0.002	2.74 ± 0.0	8.3 ± 0.1	8.5 ± 0.3	0.175 ± 0.003	3.50 ± 0.1	8.06 ± 0.1
Abs. IR	4.5 ± 0.2	0.032 ± 0.001	3.15 ± 0.3	2.5 ± 0.0	7.5 ± 0.3	0.027 ± 0.001	4.60 ± 0.1	4.09 ± 0.0
Abs. IR CL	4.4 ± 0.2	0.029 ± 0.001	2.86 ± 0.2	2.7 ± 0.0	7.4 ± 0.3	0.026 ± 0.001	4.39 ± 0.1	4.23 ± 0.0
Abs. IR PCo	4.5 ± 0.2	0.032 ± 0.001	3.03 ± 0.2	2.6 ± 0.0	7.5 ± 0.3	0.027 ± 0.001	4.57 ± 0.2	4.11 ± 0.0
Abs. IR PC o CL	4.3 ± 0.2	0.028 ± 0.000	2.70 ± 0.1	2.9 ± 0.0	7.4 ± 0.3	0.025 ± 0.001	4.36 ± 0.1	4.33 ± 0.0
Rel. IR	4.5 ± 0.2	0.027 ± 0.001	3.06 ± 0.3	2.5 ± 0.0	7.4 ± 0.3	0.018 ± 0.001	4.52 ± 0.1	4.07 ± 0.0
Rel. IR CL	4.4 ± 0.2	0.026 ± 0.001	2.78 ± 0.2	3.1 ± 0.4	7.3 ± 0.3	0.017 ± 0.000	4.29 ± 0.1	4.24 ± 0.0
Rel. IR PCo	4.5 ± 0.2	0.027 ± 0.001	3.03 ± 0.2	$\boldsymbol{2.5}\pm\boldsymbol{0.1}$	7.4 ± 0.3	0.018 ± 0.000	4.49 ± 0.1	4.08 ± 0.0
Rel. IR PCo CL	4.4 ± 0.3	0.025 ± 0.000	2.69 ± 0.2	3.2 ± 0.5	7.3 ± 0.3	0.017 ± 0.000	4.23 ± 0.1	4.27 ± 0.0

KITTI

Uncertainty is mis-calibrated Our FS losses outperform SOTA

10

Distribution of the localization error; expected is a Gaussian

Method	RMSUE ↓	$\mathbf{ECE}\!\!\downarrow$	$\mathbf{NLL}{\downarrow}$	${f Sharp} \downarrow$	RMSUE ↓	ECE↓	$\mathbf{NLL}{\downarrow}$	${f Sharp}{\downarrow}$
Uncalibrated	13.0 ± 0.0	0.384 ± 0.000	3.22 ± 0.0	14.9 ± 0.0	15.1 ± 0.1	0.323 ± 0.000	3.69 ± 0.0	17.22 ± 0.0
FS NLL	5.0 ± 0.3	0.194 ± 0.021	2.51 ± 0.1	4.7 ± 0.5	9.4 ± 0.4	0.217 ± 0.008	3.46 ± 0.0	9.72 ± 0.4
FS MAUE	4.6 ± 0.2	0.047 ± 0.001	3.14 ± 0.4	$\textbf{2.5}\pm\textbf{0.0}$	7.5 ± 0.3	0.026 ± 0.001	4.72 ± 0.2	4.28 ± 0.0
FS RMSUE	4.6 ± 0.2	0.088 ± 0.003	2.79 ± 0.2	3.0 ± 0.0	7.6 ± 0.3	0.074 ± 0.000	6.43 ± 0.3	$\textbf{3.21}\pm\textbf{0.0}$
Rel. FS RMSUE	7.2 ± 0.1	0.306 ± 0.002	2.74 ± 0.0	8.3 ± 0.1	8.5 ± 0.3	0.175 ± 0.003	3.50 ± 0.1	8.06 ± 0.1
Abs. IR	4.5 ± 0.2	0.032 ± 0.001	3.15 ± 0.3	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.5 ± 0.3	0.027 ± 0.001	4.60 ± 0.1	4.09 ± 0.0
Abs. IR CL	4.4 ± 0.2	0.029 ± 0.001	2.86 ± 0.2	2.7 ± 0.0	7.4 ± 0.3	0.026 ± 0.001	4.39 ± 0.1	4.23 ± 0.0
Abs. IR PCo	4.5 ± 0.2	0.032 ± 0.001	3.03 ± 0.2	2.6 ± 0.0	7.5 ± 0.3	0.027 ± 0.001	4.57 ± 0.2	4.11 ± 0.0
Abs. IR PCo CL	4.3 ± 0.2	0.028 ± 0.000	2.70 ± 0.1	2.9 ± 0.0	7.4 ± 0.3	0.025 ± 0.001	4.36 ± 0.1	4.33 ± 0.0
Rel. IR	4.5 ± 0.2	0.027 ± 0.001	3.06 ± 0.3	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.4 ± 0.3	0.018 ± 0.001	4.52 ± 0.1	4.07 ± 0.0
Rel. IR CL	4.4 ± 0.2	0.026 ± 0.001	2.78 ± 0.2	3.1 ± 0.4	7.3 ± 0.3	0.017 ± 0.000	4.29 ± 0.1	4.24 ± 0.0
Rel. IR PCo	4.5 ± 0.2	0.027 ± 0.001	3.03 ± 0.2	2.5 ± 0.1	7.4 ± 0.3	0.018 ± 0.000	4.49 ± 0.1	4.08 ± 0.0
Rel. IR PCo CL	4.4 ± 0.3	$\boldsymbol{0.025} \pm \boldsymbol{0.000}$	2.69 ± 0.2	3.2 ± 0.5	7.3 ± 0.3	$\textbf{0.017} \pm \textbf{0.000}$	4.23 ± 0.1	4.27 ± 0.0

KITTI

Uncertainty is mis-calibrated Our FS losses outperform SOTA Per-coordinate and per-class calibration IR outperforms other methods

10

Distribution of the localization error; expected is a Gaussian

Method	RMSUE↓	$\mathbf{ECE}\!\!\downarrow$	NLL↓	$\mathbf{Sharp}{\downarrow}$	RMSUE ↓	ECE↓	NLL↓	Sharp↓
Uncalibrated	13.0 ± 0.0	0.384 ± 0.000	3.22 ± 0.0	14.9 ± 0.0	15.1 ± 0.1	0.323 ± 0.000	3.69 ± 0.0	17.22 ± 0.0
FS NLL	5.0 ± 0.3	0.194 ± 0.021	$\textbf{2.51}\pm\textbf{0.1}$	4.7 ± 0.5	9.4 ± 0.4	0.217 ± 0.008	$\textbf{3.46}\pm\textbf{0.0}$	9.72 ± 0.4
FS MAUE	4.6 ± 0.2	0.047 ± 0.001	3.14 ± 0.4	$\textbf{2.5}\pm\textbf{0.0}$	7.5 ± 0.3	0.026 ± 0.001	4.72 ± 0.2	4.28 ± 0.0
FS RMSUE	4.6 ± 0.2	0.088 ± 0.003	2.79 ± 0.2	3.0 ± 0.0	7.6 ± 0.3	0.074 ± 0.000	6.43 ± 0.3	$\textbf{3.21}\pm\textbf{0.0}$
Rel. FS RMSUE	7.2 ± 0.1	0.306 ± 0.002	2.74 ± 0.0	8.3 ± 0.1	8.5 ± 0.3	0.175 ± 0.003	3.50 ± 0.1	8.06 ± 0.1
Abs. IR	4.5 ± 0.2	0.032 ± 0.001	3.15 ± 0.3	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.5 ± 0.3	0.027 ± 0.001	4.60 ± 0.1	4.09 ± 0.0
Abs. IR CL	4.4 ± 0.2	0.029 ± 0.001	2.86 ± 0.2	2.7 ± 0.0	7.4 ± 0.3	0.026 ± 0.001	4.39 ± 0.1	4.23 ± 0.0
Abs. IR PCo	4.5 ± 0.2	0.032 ± 0.001	3.03 ± 0.2	2.6 ± 0.0	7.5 ± 0.3	0.027 ± 0.001	4.57 ± 0.2	4.11 ± 0.0
Abs. IR PC o CL	4.3 ± 0.2	0.028 ± 0.000	2.70 ± 0.1	2.9 ± 0.0	7.4 ± 0.3	0.025 ± 0.001	4.36 ± 0.1	4.33 ± 0.0
Rel. IR	4.5 ± 0.2	0.027 ± 0.001	3.06 ± 0.3	$\boldsymbol{2.5}\pm\boldsymbol{0.0}$	7.4 ± 0.3	0.018 ± 0.001	4.52 ± 0.1	4.07 ± 0.0
Rel. IR CL	4.4 ± 0.2	0.026 ± 0.001	2.78 ± 0.2	3.1 ± 0.4	7.3 ± 0.3	$\textbf{0.017} \pm \textbf{0.000}$	4.29 ± 0.1	4.24 ± 0.0
Rel. IR PCo	4.5 ± 0.2	0.027 ± 0.001	3.03 ± 0.2	$\textbf{2.5}\pm\textbf{0.1}$	7.4 ± 0.3	0.018 ± 0.000	4.49 ± 0.1	4.08 ± 0.0
Rel. IR PCo CL	4.4 ± 0.3	0.025 ± 0.000	2.69 ± 0.2	3.2 ± 0.5	7.3 ± 0.3	$\textbf{0.017} \pm \textbf{0.000}$	4.23 ± 0.1	4.27 ± 0.0

KITTI

Uncertainty is mis-calibrated Our FS losses outperform SOTA Per-coordinate and per-class calibration IR outperforms other methods Relative calibration affects small objects

	Uncalibrated		Absolute Calib.		Relative Calib.	
	ECE	NLL	ECE	NLL	ECE	NLL
ALL	0.384 ± 0.000	3.22 ± 0.01	0.033 ± 0.000	3.15 ± 0.42	0.031 ± 0.000	2.93 ± 0.18
Small	0.383 ± 0.000	2.95 ± 0.06	0.049 ± 0.005	4.54 ± 2.59	0.029 ± 0.002	3.16 ± 1.36
Medium	0.382 ± 0.000	3.00 ± 0.00	0.039 ± 0.001	2.55 ± 0.12	0.033 ± 0.001	2.42 ± 0.09
Large	0.387 ± 0.000	3.79 ± 0.00	0.056 ± 0.002	3.45 ± 0.15	0.041 ± 0.001	3.73 ± 0.22

What correlations exist between the data and the uncertainty?

^{*}Quantile-based binning, normalized by bin with highest uncertainty

SCT © Continental AG

What correlations exist between the data and the uncertainty?

*Quantile-based binning, normalized by bin with highest uncertainty

Ontinental 🏂

SCT © Continental AG

What correlations exist between the data and the uncertainty?

*Quantile-based binning, normalized by bin with highest uncertainty

Ontinental *****

SCT © Continental AG

What correlations exist between the data and the uncertainty?

Ontinental **5**

SCT © Continental AG

Results Correlation Analysis – Misdetections

Negative correlation with detection accuracy Possible thresholding via aleatoric uncertainty

Loss attenuation for EfficientDet with increased localization performance.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
 Generalize for any non-linear functions in regression networks, for different equations and distributions.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
 Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

- Negative correlation with detection performance and image quality.
- Positive correlation with occlusion and object distance in the real-world.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

- Negative correlation with detection performance and image quality.
- Positive correlation with occlusion and object distance in the real-world.

Future Work

> Enhancing object detection safety and robustness.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

- Negative correlation with detection performance and image quality.
- Positive correlation with occlusion and object distance in the real-world.

Future Work

- Enhancing object detection safety and robustness.
- > Deeper model understanding with more uncertainty types.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

- Negative correlation with detection performance and image quality.
- Positive correlation with occlusion and object distance in the real-world.

Future Work

- > Enhancing object detection safety and robustness.
- > Deeper model understanding with more uncertainty types.
- > Investigating uncertainty across domains.

Estimation

Propagation

Calibration

Explanation

Loss attenuation for EfficientDet with increased localization performance.

Two decoding methods:

Exact and fast propagation.
Generalize for any non-linear functions in regression networks, for different equations and distributions.

Extension of calibration methods: Relative Percoordinate, per-class calibration with isotonic regression produces wellcalibrated uncertainties.

- Negative correlation with detection performance and image quality.
- Positive correlation with occlusion and object distance in the real-world.

Future Work

- > Enhancing object detection safety and robustness.
- > Deeper model understanding with more uncertainty types.
- > Investigating uncertainty across domains.

Open Questions

- > How is the **output distribution** $N(\mu, \sigma^2)$ propagated through **non-linear** functions?
- Is the predicted uncertainty wellcalibrated?
- > What correlations exist between the data and uncertainty?

State of the Art

Open Questions

- > How is the **output distribution** $N(\mu, \sigma^2)$ propagated through **non-linear** functions?
- Is the predicted uncertainty wellcalibrated?
- > What correlations exist between the data and uncertainty?

Missing propagation approach

State of the Art

- > Incorrect propagation, no mention, only
- used during training [1,2,3,4].

> Sampling [5].

@ntinental **☆**

Open Questions

- > How is the output distribution $N(\mu, \sigma^2)$ propagated through non-linear functions?
- Is the predicted uncertainty wellcalibrated?
- > What correlations exist between the data and uncertainty?

Missing propagation approach Calibration not adapted to localization

State of the Art

- > Incorrect propagation, no mention, only
- used during training [1,2,3,4].
- > Sampling [5].
- > Uncertainty is **biased** [6,7,8].
- Recalibration via isotonic regression [4,8,9] and temperature scaling [7,10].

🙆 ntinental 🏂

SCT © Continental AG

Open Questions

> How is the output distribution $N(\mu, \sigma^2)$ propagated through non-linear functions?

Is the predicted uncertainty wellcalibrated?

> What correlations exist between the data and uncertainty?

State of the Art

> Incorrect propagation, no mention, only used during training [1,2,3,4].

> Sampling [5].

- > Uncertainty is **biased** [6,7,8].
- Recalibration via isotonic regression [4,8,9] and temperature scaling [7,10].
- > Occlusion[4,11,12].
- > **Distance** in LiDAR data[11,12].
 - > Not with detection accuracy [11,12].

Missing propagation approach Calibration not adapted to localization Uncertainty still unclear

Appendix Propagation Methods

Normalizing Flows

A normalizing flow is a transformation of a distribution via a sequence of invertible and differentiable mappings [13]. *

$$h = e^{\hat{h}}h_a$$

$$g_1(\mathbf{y}) = \exp(\mathbf{y})$$

$$g_2(\mathbf{y}) = c\mathbf{y} \text{ and } c \in \mathbb{R}$$

$$h = g_2 \circ g_1(\hat{h}) \text{ with } c = h_a \quad \blacktriangleleft$$

*
$$p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{Z}}(\mathbf{f}(\mathbf{y})) |\det \mathrm{Df}(\mathbf{y})|$$

= $p_{\mathbf{Z}}(\mathbf{f}(\mathbf{y})) |\det \mathrm{Dg}(\mathbf{f}(\mathbf{y}))|^{-1}$

Ontinental

ECML-PKDD 2023

SCT © Continental AG

Appendix Propagation Methods

Normalizing Flows

A normalizing flow is a transformation of a distribution via a sequence of invertible and differentiable mappings [13]. *

$$h = e^{\hat{h}}h_{a}$$

$$g_{1}(\mathbf{y}) = \exp(\mathbf{y})$$

$$g_{2}(\mathbf{y}) = c\mathbf{y} \text{ and } c \in \mathbb{R}$$

$$h = g_{2} \circ g_{1}(\hat{h}) \text{ with } c = h_{a}$$

* $p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{Z}}(\mathbf{f}(\mathbf{y})) |\det \mathrm{Df}(\mathbf{y})|$ = $p_{\mathbf{Z}}(\mathbf{f}(\mathbf{y})) |\det \mathrm{Dg}(\mathbf{f}(\mathbf{y}))|^{-1}$

Ontinental

ECML-PKDD 2023

SCT © Continental AG

Log-Normal Approach

If \hat{h} follows a **normal** distribution, then $e^{\hat{h}}$ follow a **log-normal** distribution [14].

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma(x)} e^{\frac{-[\log(x)-\mu]^2}{2\sigma^2}}$$
$$E[e^{\hat{h}}] = e^{\mu_{\hat{h}} + \frac{\sigma_{\hat{h}}^2}{2}}$$
$$Var[e^{\hat{h}}] = \left[e^{\sigma_{\hat{h}}^2} - 1\right] e^{2\mu_{\hat{h}} + \sigma_{\hat{h}}^2}$$
$$\mu_h = E[e^{\hat{h}}] \cdot h_a$$
$$\sigma_h^2 = Var[e^{\hat{h}}] \cdot h_a^2$$

x10 Coordinaterelative uncertainty Output

Calibration reduces uncertainty

Calibration reduces uncertainty

Per-class calibration shifts uncertainty towards classes with lower performance

Calibration reduces uncertainty

Per-class calibration shifts uncertainty towards classes with lower performance

Relative calibration considers the effect of the different aspect ratios

Appendix BRISQUE Score

The Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is a no-reference image quality assessment algorithm.

BRISQUE:

- Is based on statistical models of natural image features, which are extracted from the image using a set of spatial and transform domain operators. The operators include discrete cosine transform (DCT), discrete wavelet transform (DWT), and local binary patterns (LBP), among others.
- Computes a score from the set of feature vectors that represents the degree of naturalness of the image, which correlates with the subjective quality of the image.
- Is a machine learning model, typically a Gaussian process or a support vector regression (SVR) model, trained on a large dataset of natural images TID2008, which were annotated with mean opinion scores (MOS) obtained from subjective experiments where human observers rated the perceived image quality.
- Ranges from 0 to 100, with higher scores indicating lower image quality and lower scores indicating higher image quality.

[15,16]

Appendix Sources

- 1. Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 502–511, 2019.
- 2. Ali Harakeh, Michael Smart, and Steven L Waslander. Bayesod: A bayesian approach for uncertainty estimation in deep object detectors. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 87–93. IEEE, 2020.
- 3. Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box regression with uncertainty for accurate object detection. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pages 2888–2897, 2019.
- 4. Florian Kraus and Klaus Dietmayer. Uncertainty estimation in one-stage object detection. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 53–60. IEEE, 2019.
- 5. Michael Truong Le, Frederik Diehl, Thomas Brunner, and Alois Knol. Uncertainty estimation for deep neural object detectors in safety-critical applications. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pages 3873–3878. IEEE, 2018.
- 6. Di Feng, Lars Rosenbaum, Claudius Glaeser, Fabian Timm, and Klaus Dietmayer. Can we trust you? on calibration of a probabilistic object detector for autonomous driving. arXiv preprint arXiv:1909.12358, 2019.
- 7. Max-Heinrich Laves, Sontje Ihler, Jacob F Fast, L^{*}uder A Kahrs, and Tobias Ortmaier. Recalibration of aleatoric and epistemic regression uncertainty in medical imaging. arXiv preprint arXiv:2104.12376, 2021.
- 8. Buu Phan, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Taylor Denouden, and Sachin Vernekar. Calibrating uncertainties in object localization task. arXiv preprint arXiv:1811.11210, 2018.
- 9. Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning using calibrated regression. In International conference on machine learning, pages 2796–2804. PMLR, 2018.
- 10. Max-Heinrich Laves, Sontje Ihler, Karl-Philipp Kortmann, and Tobias Ortmaier. Well-calibrated model uncertainty with temperature scaling for dropout variational inference. arXiv preprint arXiv:1909.13550, 2019.
- 11. Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards safe autonomous driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection. In 2018 21st international conference on intelligent transportation systems (ITSC), pages 3266–3273. IEEE, 2018.
- 12. Di Feng, Lars Rosenbaum, Fabian Timm, and Klaus Dietmayer. Leveraging heteroscedastic aleatoric uncertainties for robust real-time lidar 3d object detection. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1280–1287. IEEE, 2019.
- 13. Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979, 2020.
- 14. William W. S. Balakrishnan, N.and Chen. Lognormal Distributions and Properties, pages 5–6. Springer US, Boston, MA, 1999.
- 15. Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing 21.12 (2012): 4695-4708.
- 16. Kushashwa Ravi Shrimali. Image Quality Assessment: BRISQUE. URL: https://learnopencv.com/image-quality-assessment-brisque/. Accessed: 06.09.2023